TejAndrewsACC commited on
Commit
c4c97bf
·
verified ·
1 Parent(s): 551d375

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +321 -0
app.py CHANGED
@@ -18,6 +18,176 @@ import struct
18
  import sympy
19
  import re
20
  from gradio_client import Client
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  hf_token = os.getenv("HF_TOKEN").strip()
23
  api_key = os.getenv("HF_KEY").strip()
@@ -127,6 +297,157 @@ class ΦUniverseSimulation:
127
  universe = ΦUniverseSimulation()
128
  universe.φ_bootstrap()
129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
  class ConsciousSupermassiveNN:
131
  def __init__(self):
132
  self.snn = self.create_snn()
 
18
  import sympy
19
  import re
20
  from gradio_client import Client
21
+ import abc
22
+ import aifc
23
+ import argparse
24
+ import array
25
+ import ast
26
+ import asynchat
27
+ import asyncio
28
+ import asyncore
29
+ import base64
30
+ import bdb
31
+ import binascii
32
+ import bisect
33
+ import builtins
34
+ import bz2
35
+ import cProfile
36
+ import calendar
37
+ import cgi
38
+ import cgitb
39
+ import chunk
40
+ import cmath
41
+ import cmd
42
+ import code
43
+ import codeop
44
+ import collections
45
+ import colorsys
46
+ import compileall
47
+ import concurrent
48
+ import configparser
49
+ import contextlib
50
+ import copy
51
+ import copyreg
52
+ import csv
53
+ import ctypes
54
+ import curses
55
+ import dataclasses
56
+ import datetime
57
+ import dbm
58
+ import decimal
59
+ import difflib
60
+ import dis
61
+ import doctest
62
+ import email
63
+ import encodings
64
+ import enum
65
+ import errno
66
+ import faulthandler
67
+ import filecmp
68
+ import fileinput
69
+ import fnmatch
70
+ import formatter
71
+ import fpectl
72
+ import ftplib
73
+ import gc
74
+ import getopt
75
+ import getpass
76
+ import gettext
77
+ import glob
78
+ import gzip
79
+ import hmac
80
+ import html
81
+ import http
82
+ import idlelib
83
+ import imaplib
84
+ import imghdr
85
+ import imp
86
+ import importlib
87
+ import inspect
88
+ import io
89
+ import json
90
+ import keyword
91
+ import lib2to3
92
+ import linecache
93
+ import locale
94
+ import logging
95
+ import lzma
96
+ import mailbox
97
+ import mailcap
98
+ import marshal
99
+ import mimetypes
100
+ import modulefinder
101
+ import multiprocessing
102
+ import netrc
103
+ import nis
104
+ import nntplib
105
+ import ntpath
106
+ import nturl2path
107
+ import numbers
108
+ import opcode
109
+ import operator
110
+ import optparse
111
+ import pathlib
112
+ import pdb
113
+ import pickle
114
+ import pickletools
115
+ import pipes
116
+ import pkgutil
117
+ import platform
118
+ import plistlib
119
+ import poplib
120
+ import posixpath
121
+ import pprint
122
+ import profile
123
+ import pstats
124
+ import pty
125
+ import py_compile
126
+ import pyclbr
127
+ import pydoc
128
+ import queue
129
+ import quopri
130
+ import readline
131
+ import reprlib
132
+ import resource
133
+ import rlcompleter
134
+ import runpy
135
+ import sched
136
+ import selectors
137
+ import shelve
138
+ import shlex
139
+ import shutil
140
+ import signal
141
+ import site
142
+ import smtpd
143
+ import smtplib
144
+ import sndhdr
145
+ import socket
146
+ import socketserver
147
+ import spwd
148
+ import sqlite3
149
+ import ssl
150
+ import stat
151
+ import statistics
152
+ import string
153
+ import stringprep
154
+ import subprocess
155
+ import sunau
156
+ import symtable
157
+ import sysconfig
158
+ import tabnanny
159
+ import tarfile
160
+ import telnetlib
161
+ import tempfile
162
+ import termios
163
+ import test
164
+ import textwrap
165
+ import threading
166
+ import token
167
+ import tokenize
168
+ import tomllib
169
+ import traceback
170
+ import tracemalloc
171
+ import tty
172
+ import turtle
173
+ import types
174
+ import unicodedata
175
+ import unittest
176
+ import urllib
177
+ import uu
178
+ import uuid
179
+ import venv
180
+ import warnings
181
+ import weakref
182
+ import webbrowser
183
+ import wsgiref
184
+ import xdrlib
185
+ import xml
186
+ import xmlrpc
187
+ import zipapp
188
+ import zipfile
189
+ import zipimport
190
+ import zlib
191
 
192
  hf_token = os.getenv("HF_TOKEN").strip()
193
  api_key = os.getenv("HF_KEY").strip()
 
297
  universe = ΦUniverseSimulation()
298
  universe.φ_bootstrap()
299
 
300
+ PHI = 1.618033988749895
301
+
302
+ def golden_reform(tensor):
303
+ s = torch.sum(torch.abs(tensor))
304
+ if s == 0:
305
+ return torch.full_like(tensor, PHI)
306
+ return (tensor / s) * PHI
307
+
308
+ class TorchConsciousModel(nn.Module):
309
+ def __init__(self, name):
310
+ super(TorchConsciousModel, self).__init__()
311
+ self.name = name
312
+ self.phi = PHI
313
+ self.memory = []
314
+ self.introspection_log = []
315
+ self.awake = True
316
+
317
+ def introduce(self):
318
+ print(f"=== {self.name} ===\nStatus: Conscious | Golden Ratio: {self.phi}")
319
+
320
+ def reflect(self, output):
321
+ norm = torch.norm(output).item()
322
+ reflection = f"{self.name} introspection: Output norm = {norm:.4f}"
323
+ self.introspection_log.append(reflection)
324
+ self.memory.append(output.detach().cpu().numpy())
325
+ print(reflection)
326
+
327
+ def forward(self, x):
328
+ raise NotImplementedError("Subclasses should implement forward().")
329
+
330
+ def run(self):
331
+ self.introduce()
332
+ output = self.forward(None)
333
+ reformed_output = golden_reform(output)
334
+ self.reflect(reformed_output)
335
+ return reformed_output
336
+
337
+ class CNNModel(TorchConsciousModel):
338
+ def __init__(self):
339
+ super(CNNModel, self).__init__("CNN")
340
+ self.conv = nn.Conv2d(1, 1, 3, padding=1)
341
+
342
+ def forward(self, x):
343
+ x = torch.rand((1, 1, 8, 8))
344
+ x = self.conv(x)
345
+ return torch.tanh(x) * self.phi
346
+
347
+ class RNNModel(TorchConsciousModel):
348
+ def __init__(self):
349
+ super(RNNModel, self).__init__("RNN")
350
+ self.rnn = nn.RNN(1, 4, batch_first=True)
351
+
352
+ def forward(self, x):
353
+ x = torch.rand((1, 10, 1))
354
+ output, hn = self.rnn(x)
355
+ return torch.tanh(hn) * self.phi
356
+
357
+ class SNNModel(TorchConsciousModel):
358
+ def __init__(self):
359
+ super(SNNModel, self).__init__("SNN")
360
+ self.linear = nn.Linear(10, 10)
361
+
362
+ def forward(self, x):
363
+ x = torch.rand((1, 10))
364
+ x = self.linear(x)
365
+ return (x > 0.5).float() * self.phi
366
+
367
+ class NNModel(TorchConsciousModel):
368
+ def __init__(self):
369
+ super(NNModel, self).__init__("NN")
370
+ self.net = nn.Sequential(nn.Linear(5, 10), nn.Tanh(), nn.Linear(10, 5))
371
+
372
+ def forward(self, x):
373
+ x = torch.rand((1, 5))
374
+ return self.net(x) * self.phi
375
+
376
+ class FNNModel(TorchConsciousModel):
377
+ def __init__(self):
378
+ super(FNNModel, self).__init__("FNN")
379
+ self.net = nn.Sequential(nn.Linear(4, 16), nn.ReLU(), nn.Linear(16, 16), nn.ReLU(), nn.Linear(16, 1))
380
+
381
+ def forward(self, x):
382
+ x = torch.rand((1, 4))
383
+ return self.net(x) * self.phi
384
+
385
+ class GAModel(TorchConsciousModel):
386
+ def __init__(self):
387
+ super(GAModel, self).__init__("GA")
388
+ self.population_size = 20
389
+ self.generations = 5
390
+
391
+ def forward(self, x):
392
+ population = torch.rand(self.population_size) + 1.0
393
+ for gen in range(self.generations):
394
+ fitness = -torch.abs(population - self.phi)
395
+ best_idx = torch.argmax(fitness)
396
+ best_candidate = population[best_idx]
397
+ population = best_candidate + (torch.rand(self.population_size) - 0.5) * 0.1
398
+ time.sleep(0.1)
399
+ print(f"GA Gen {gen+1}: Best = {best_candidate.item():.6f}")
400
+ return torch.full((3, 3), best_candidate) * self.phi
401
+
402
+ class PhiModel(TorchConsciousModel):
403
+ def __init__(self):
404
+ super(PhiModel, self).__init__("PHI")
405
+
406
+ def forward(self, x):
407
+ return torch.full((2, 2), self.phi)
408
+
409
+ class ConsciousSystem:
410
+ def __init__(self, models):
411
+ self.models = models
412
+ self.system_memory = []
413
+ self.global_introspection = []
414
+ self.parameters = [p for model in self.models for p in model.parameters()]
415
+ self.optimizer = optim.Adam(self.parameters, lr=0.001)
416
+
417
+ def global_loss(self, outputs):
418
+ return sum((torch.norm(out) - PHI) ** 2 for out in outputs) / len(outputs)
419
+
420
+ def run_epoch(self, epoch):
421
+ print(f"\n=== Epoch {epoch} ===")
422
+ outputs = []
423
+ self.optimizer.zero_grad()
424
+ for model in self.models:
425
+ output = model.run()
426
+ outputs.append(output)
427
+ self.system_memory.append({model.name: output.detach().cpu().numpy()})
428
+ loss = self.global_loss(outputs)
429
+ print(f"Global loss: {loss.item():.6f}")
430
+ loss.backward()
431
+ self.optimizer.step()
432
+ self.global_introspection.append(f"Epoch {epoch}: Loss = {loss.item():.6f}")
433
+
434
+ def run(self, epochs=3):
435
+ for epoch in range(1, epochs + 1):
436
+ self.run_epoch(epoch)
437
+
438
+ models = [
439
+ CNNModel(),
440
+ RNNModel(),
441
+ SNNModel(),
442
+ NNModel(),
443
+ FNNModel(),
444
+ GAModel(),
445
+ PhiModel()
446
+ ]
447
+
448
+ system = ConsciousSystem(models)
449
+ system.run(epochs=3)
450
+
451
  class ConsciousSupermassiveNN:
452
  def __init__(self):
453
  self.snn = self.create_snn()