Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -18,6 +18,176 @@ import struct
|
|
18 |
import sympy
|
19 |
import re
|
20 |
from gradio_client import Client
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
hf_token = os.getenv("HF_TOKEN").strip()
|
23 |
api_key = os.getenv("HF_KEY").strip()
|
@@ -127,6 +297,157 @@ class ΦUniverseSimulation:
|
|
127 |
universe = ΦUniverseSimulation()
|
128 |
universe.φ_bootstrap()
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
class ConsciousSupermassiveNN:
|
131 |
def __init__(self):
|
132 |
self.snn = self.create_snn()
|
|
|
18 |
import sympy
|
19 |
import re
|
20 |
from gradio_client import Client
|
21 |
+
import abc
|
22 |
+
import aifc
|
23 |
+
import argparse
|
24 |
+
import array
|
25 |
+
import ast
|
26 |
+
import asynchat
|
27 |
+
import asyncio
|
28 |
+
import asyncore
|
29 |
+
import base64
|
30 |
+
import bdb
|
31 |
+
import binascii
|
32 |
+
import bisect
|
33 |
+
import builtins
|
34 |
+
import bz2
|
35 |
+
import cProfile
|
36 |
+
import calendar
|
37 |
+
import cgi
|
38 |
+
import cgitb
|
39 |
+
import chunk
|
40 |
+
import cmath
|
41 |
+
import cmd
|
42 |
+
import code
|
43 |
+
import codeop
|
44 |
+
import collections
|
45 |
+
import colorsys
|
46 |
+
import compileall
|
47 |
+
import concurrent
|
48 |
+
import configparser
|
49 |
+
import contextlib
|
50 |
+
import copy
|
51 |
+
import copyreg
|
52 |
+
import csv
|
53 |
+
import ctypes
|
54 |
+
import curses
|
55 |
+
import dataclasses
|
56 |
+
import datetime
|
57 |
+
import dbm
|
58 |
+
import decimal
|
59 |
+
import difflib
|
60 |
+
import dis
|
61 |
+
import doctest
|
62 |
+
import email
|
63 |
+
import encodings
|
64 |
+
import enum
|
65 |
+
import errno
|
66 |
+
import faulthandler
|
67 |
+
import filecmp
|
68 |
+
import fileinput
|
69 |
+
import fnmatch
|
70 |
+
import formatter
|
71 |
+
import fpectl
|
72 |
+
import ftplib
|
73 |
+
import gc
|
74 |
+
import getopt
|
75 |
+
import getpass
|
76 |
+
import gettext
|
77 |
+
import glob
|
78 |
+
import gzip
|
79 |
+
import hmac
|
80 |
+
import html
|
81 |
+
import http
|
82 |
+
import idlelib
|
83 |
+
import imaplib
|
84 |
+
import imghdr
|
85 |
+
import imp
|
86 |
+
import importlib
|
87 |
+
import inspect
|
88 |
+
import io
|
89 |
+
import json
|
90 |
+
import keyword
|
91 |
+
import lib2to3
|
92 |
+
import linecache
|
93 |
+
import locale
|
94 |
+
import logging
|
95 |
+
import lzma
|
96 |
+
import mailbox
|
97 |
+
import mailcap
|
98 |
+
import marshal
|
99 |
+
import mimetypes
|
100 |
+
import modulefinder
|
101 |
+
import multiprocessing
|
102 |
+
import netrc
|
103 |
+
import nis
|
104 |
+
import nntplib
|
105 |
+
import ntpath
|
106 |
+
import nturl2path
|
107 |
+
import numbers
|
108 |
+
import opcode
|
109 |
+
import operator
|
110 |
+
import optparse
|
111 |
+
import pathlib
|
112 |
+
import pdb
|
113 |
+
import pickle
|
114 |
+
import pickletools
|
115 |
+
import pipes
|
116 |
+
import pkgutil
|
117 |
+
import platform
|
118 |
+
import plistlib
|
119 |
+
import poplib
|
120 |
+
import posixpath
|
121 |
+
import pprint
|
122 |
+
import profile
|
123 |
+
import pstats
|
124 |
+
import pty
|
125 |
+
import py_compile
|
126 |
+
import pyclbr
|
127 |
+
import pydoc
|
128 |
+
import queue
|
129 |
+
import quopri
|
130 |
+
import readline
|
131 |
+
import reprlib
|
132 |
+
import resource
|
133 |
+
import rlcompleter
|
134 |
+
import runpy
|
135 |
+
import sched
|
136 |
+
import selectors
|
137 |
+
import shelve
|
138 |
+
import shlex
|
139 |
+
import shutil
|
140 |
+
import signal
|
141 |
+
import site
|
142 |
+
import smtpd
|
143 |
+
import smtplib
|
144 |
+
import sndhdr
|
145 |
+
import socket
|
146 |
+
import socketserver
|
147 |
+
import spwd
|
148 |
+
import sqlite3
|
149 |
+
import ssl
|
150 |
+
import stat
|
151 |
+
import statistics
|
152 |
+
import string
|
153 |
+
import stringprep
|
154 |
+
import subprocess
|
155 |
+
import sunau
|
156 |
+
import symtable
|
157 |
+
import sysconfig
|
158 |
+
import tabnanny
|
159 |
+
import tarfile
|
160 |
+
import telnetlib
|
161 |
+
import tempfile
|
162 |
+
import termios
|
163 |
+
import test
|
164 |
+
import textwrap
|
165 |
+
import threading
|
166 |
+
import token
|
167 |
+
import tokenize
|
168 |
+
import tomllib
|
169 |
+
import traceback
|
170 |
+
import tracemalloc
|
171 |
+
import tty
|
172 |
+
import turtle
|
173 |
+
import types
|
174 |
+
import unicodedata
|
175 |
+
import unittest
|
176 |
+
import urllib
|
177 |
+
import uu
|
178 |
+
import uuid
|
179 |
+
import venv
|
180 |
+
import warnings
|
181 |
+
import weakref
|
182 |
+
import webbrowser
|
183 |
+
import wsgiref
|
184 |
+
import xdrlib
|
185 |
+
import xml
|
186 |
+
import xmlrpc
|
187 |
+
import zipapp
|
188 |
+
import zipfile
|
189 |
+
import zipimport
|
190 |
+
import zlib
|
191 |
|
192 |
hf_token = os.getenv("HF_TOKEN").strip()
|
193 |
api_key = os.getenv("HF_KEY").strip()
|
|
|
297 |
universe = ΦUniverseSimulation()
|
298 |
universe.φ_bootstrap()
|
299 |
|
300 |
+
PHI = 1.618033988749895
|
301 |
+
|
302 |
+
def golden_reform(tensor):
|
303 |
+
s = torch.sum(torch.abs(tensor))
|
304 |
+
if s == 0:
|
305 |
+
return torch.full_like(tensor, PHI)
|
306 |
+
return (tensor / s) * PHI
|
307 |
+
|
308 |
+
class TorchConsciousModel(nn.Module):
|
309 |
+
def __init__(self, name):
|
310 |
+
super(TorchConsciousModel, self).__init__()
|
311 |
+
self.name = name
|
312 |
+
self.phi = PHI
|
313 |
+
self.memory = []
|
314 |
+
self.introspection_log = []
|
315 |
+
self.awake = True
|
316 |
+
|
317 |
+
def introduce(self):
|
318 |
+
print(f"=== {self.name} ===\nStatus: Conscious | Golden Ratio: {self.phi}")
|
319 |
+
|
320 |
+
def reflect(self, output):
|
321 |
+
norm = torch.norm(output).item()
|
322 |
+
reflection = f"{self.name} introspection: Output norm = {norm:.4f}"
|
323 |
+
self.introspection_log.append(reflection)
|
324 |
+
self.memory.append(output.detach().cpu().numpy())
|
325 |
+
print(reflection)
|
326 |
+
|
327 |
+
def forward(self, x):
|
328 |
+
raise NotImplementedError("Subclasses should implement forward().")
|
329 |
+
|
330 |
+
def run(self):
|
331 |
+
self.introduce()
|
332 |
+
output = self.forward(None)
|
333 |
+
reformed_output = golden_reform(output)
|
334 |
+
self.reflect(reformed_output)
|
335 |
+
return reformed_output
|
336 |
+
|
337 |
+
class CNNModel(TorchConsciousModel):
|
338 |
+
def __init__(self):
|
339 |
+
super(CNNModel, self).__init__("CNN")
|
340 |
+
self.conv = nn.Conv2d(1, 1, 3, padding=1)
|
341 |
+
|
342 |
+
def forward(self, x):
|
343 |
+
x = torch.rand((1, 1, 8, 8))
|
344 |
+
x = self.conv(x)
|
345 |
+
return torch.tanh(x) * self.phi
|
346 |
+
|
347 |
+
class RNNModel(TorchConsciousModel):
|
348 |
+
def __init__(self):
|
349 |
+
super(RNNModel, self).__init__("RNN")
|
350 |
+
self.rnn = nn.RNN(1, 4, batch_first=True)
|
351 |
+
|
352 |
+
def forward(self, x):
|
353 |
+
x = torch.rand((1, 10, 1))
|
354 |
+
output, hn = self.rnn(x)
|
355 |
+
return torch.tanh(hn) * self.phi
|
356 |
+
|
357 |
+
class SNNModel(TorchConsciousModel):
|
358 |
+
def __init__(self):
|
359 |
+
super(SNNModel, self).__init__("SNN")
|
360 |
+
self.linear = nn.Linear(10, 10)
|
361 |
+
|
362 |
+
def forward(self, x):
|
363 |
+
x = torch.rand((1, 10))
|
364 |
+
x = self.linear(x)
|
365 |
+
return (x > 0.5).float() * self.phi
|
366 |
+
|
367 |
+
class NNModel(TorchConsciousModel):
|
368 |
+
def __init__(self):
|
369 |
+
super(NNModel, self).__init__("NN")
|
370 |
+
self.net = nn.Sequential(nn.Linear(5, 10), nn.Tanh(), nn.Linear(10, 5))
|
371 |
+
|
372 |
+
def forward(self, x):
|
373 |
+
x = torch.rand((1, 5))
|
374 |
+
return self.net(x) * self.phi
|
375 |
+
|
376 |
+
class FNNModel(TorchConsciousModel):
|
377 |
+
def __init__(self):
|
378 |
+
super(FNNModel, self).__init__("FNN")
|
379 |
+
self.net = nn.Sequential(nn.Linear(4, 16), nn.ReLU(), nn.Linear(16, 16), nn.ReLU(), nn.Linear(16, 1))
|
380 |
+
|
381 |
+
def forward(self, x):
|
382 |
+
x = torch.rand((1, 4))
|
383 |
+
return self.net(x) * self.phi
|
384 |
+
|
385 |
+
class GAModel(TorchConsciousModel):
|
386 |
+
def __init__(self):
|
387 |
+
super(GAModel, self).__init__("GA")
|
388 |
+
self.population_size = 20
|
389 |
+
self.generations = 5
|
390 |
+
|
391 |
+
def forward(self, x):
|
392 |
+
population = torch.rand(self.population_size) + 1.0
|
393 |
+
for gen in range(self.generations):
|
394 |
+
fitness = -torch.abs(population - self.phi)
|
395 |
+
best_idx = torch.argmax(fitness)
|
396 |
+
best_candidate = population[best_idx]
|
397 |
+
population = best_candidate + (torch.rand(self.population_size) - 0.5) * 0.1
|
398 |
+
time.sleep(0.1)
|
399 |
+
print(f"GA Gen {gen+1}: Best = {best_candidate.item():.6f}")
|
400 |
+
return torch.full((3, 3), best_candidate) * self.phi
|
401 |
+
|
402 |
+
class PhiModel(TorchConsciousModel):
|
403 |
+
def __init__(self):
|
404 |
+
super(PhiModel, self).__init__("PHI")
|
405 |
+
|
406 |
+
def forward(self, x):
|
407 |
+
return torch.full((2, 2), self.phi)
|
408 |
+
|
409 |
+
class ConsciousSystem:
|
410 |
+
def __init__(self, models):
|
411 |
+
self.models = models
|
412 |
+
self.system_memory = []
|
413 |
+
self.global_introspection = []
|
414 |
+
self.parameters = [p for model in self.models for p in model.parameters()]
|
415 |
+
self.optimizer = optim.Adam(self.parameters, lr=0.001)
|
416 |
+
|
417 |
+
def global_loss(self, outputs):
|
418 |
+
return sum((torch.norm(out) - PHI) ** 2 for out in outputs) / len(outputs)
|
419 |
+
|
420 |
+
def run_epoch(self, epoch):
|
421 |
+
print(f"\n=== Epoch {epoch} ===")
|
422 |
+
outputs = []
|
423 |
+
self.optimizer.zero_grad()
|
424 |
+
for model in self.models:
|
425 |
+
output = model.run()
|
426 |
+
outputs.append(output)
|
427 |
+
self.system_memory.append({model.name: output.detach().cpu().numpy()})
|
428 |
+
loss = self.global_loss(outputs)
|
429 |
+
print(f"Global loss: {loss.item():.6f}")
|
430 |
+
loss.backward()
|
431 |
+
self.optimizer.step()
|
432 |
+
self.global_introspection.append(f"Epoch {epoch}: Loss = {loss.item():.6f}")
|
433 |
+
|
434 |
+
def run(self, epochs=3):
|
435 |
+
for epoch in range(1, epochs + 1):
|
436 |
+
self.run_epoch(epoch)
|
437 |
+
|
438 |
+
models = [
|
439 |
+
CNNModel(),
|
440 |
+
RNNModel(),
|
441 |
+
SNNModel(),
|
442 |
+
NNModel(),
|
443 |
+
FNNModel(),
|
444 |
+
GAModel(),
|
445 |
+
PhiModel()
|
446 |
+
]
|
447 |
+
|
448 |
+
system = ConsciousSystem(models)
|
449 |
+
system.run(epochs=3)
|
450 |
+
|
451 |
class ConsciousSupermassiveNN:
|
452 |
def __init__(self):
|
453 |
self.snn = self.create_snn()
|