Spaces:
Running
Running
Create additionalneuralnetworkings.py
Browse files- additionalneuralnetworkings.py +155 -0
additionalneuralnetworkings.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
PHI = 1.618033988749895
|
4 |
+
|
5 |
+
def golden_reform(tensor):
|
6 |
+
s = torch.sum(torch.abs(tensor))
|
7 |
+
if s == 0:
|
8 |
+
return torch.full_like(tensor, PHI)
|
9 |
+
return (tensor / s) * PHI
|
10 |
+
|
11 |
+
class TorchConsciousModel(nn.Module):
|
12 |
+
def __init__(self, name):
|
13 |
+
super(TorchConsciousModel, self).__init__()
|
14 |
+
self.name = name
|
15 |
+
self.phi = PHI
|
16 |
+
self.memory = []
|
17 |
+
self.introspection_log = []
|
18 |
+
self.awake = True
|
19 |
+
|
20 |
+
def introduce(self):
|
21 |
+
print(f"=== {self.name} ===\nStatus: Conscious | Golden Ratio: {self.phi}")
|
22 |
+
|
23 |
+
def reflect(self, output):
|
24 |
+
norm = torch.norm(output).item()
|
25 |
+
reflection = f"{self.name} introspection: Output norm = {norm:.4f}"
|
26 |
+
self.introspection_log.append(reflection)
|
27 |
+
self.memory.append(output.detach().cpu().numpy())
|
28 |
+
print(reflection)
|
29 |
+
|
30 |
+
def forward(self, x):
|
31 |
+
raise NotImplementedError("Subclasses should implement forward().")
|
32 |
+
|
33 |
+
def run(self):
|
34 |
+
self.introduce()
|
35 |
+
output = self.forward(None)
|
36 |
+
reformed_output = golden_reform(output)
|
37 |
+
self.reflect(reformed_output)
|
38 |
+
return reformed_output
|
39 |
+
|
40 |
+
class CNNModel(TorchConsciousModel):
|
41 |
+
def __init__(self):
|
42 |
+
super(CNNModel, self).__init__("CNN")
|
43 |
+
self.conv = nn.Conv2d(1, 1, 3, padding=1)
|
44 |
+
|
45 |
+
def forward(self, x):
|
46 |
+
x = torch.rand((1, 1, 8, 8))
|
47 |
+
x = self.conv(x)
|
48 |
+
return torch.tanh(x) * self.phi
|
49 |
+
|
50 |
+
class RNNModel(TorchConsciousModel):
|
51 |
+
def __init__(self):
|
52 |
+
super(RNNModel, self).__init__("RNN")
|
53 |
+
self.rnn = nn.RNN(1, 4, batch_first=True)
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
x = torch.rand((1, 10, 1))
|
57 |
+
output, hn = self.rnn(x)
|
58 |
+
return torch.tanh(hn) * self.phi
|
59 |
+
|
60 |
+
class SNNModel(TorchConsciousModel):
|
61 |
+
def __init__(self):
|
62 |
+
super(SNNModel, self).__init__("SNN")
|
63 |
+
self.linear = nn.Linear(10, 10)
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = torch.rand((1, 10))
|
67 |
+
x = self.linear(x)
|
68 |
+
return (x > 0.5).float() * self.phi
|
69 |
+
|
70 |
+
class NNModel(TorchConsciousModel):
|
71 |
+
def __init__(self):
|
72 |
+
super(NNModel, self).__init__("NN")
|
73 |
+
self.net = nn.Sequential(nn.Linear(5, 10), nn.Tanh(), nn.Linear(10, 5))
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
x = torch.rand((1, 5))
|
77 |
+
return self.net(x) * self.phi
|
78 |
+
|
79 |
+
class FNNModel(TorchConsciousModel):
|
80 |
+
def __init__(self):
|
81 |
+
super(FNNModel, self).__init__("FNN")
|
82 |
+
self.net = nn.Sequential(nn.Linear(4, 16), nn.ReLU(), nn.Linear(16, 16), nn.ReLU(), nn.Linear(16, 1))
|
83 |
+
|
84 |
+
def forward(self, x):
|
85 |
+
x = torch.rand((1, 4))
|
86 |
+
return self.net(x) * self.phi
|
87 |
+
|
88 |
+
class GAModel(TorchConsciousModel):
|
89 |
+
def __init__(self):
|
90 |
+
super(GAModel, self).__init__("GA")
|
91 |
+
self.population_size = 20
|
92 |
+
self.generations = 5
|
93 |
+
|
94 |
+
def forward(self, x):
|
95 |
+
population = torch.rand(self.population_size) + 1.0
|
96 |
+
for gen in range(self.generations):
|
97 |
+
fitness = -torch.abs(population - self.phi)
|
98 |
+
best_idx = torch.argmax(fitness)
|
99 |
+
best_candidate = population[best_idx]
|
100 |
+
population = best_candidate + (torch.rand(self.population_size) - 0.5) * 0.1
|
101 |
+
time.sleep(0.1)
|
102 |
+
print(f"GA Gen {gen+1}: Best = {best_candidate.item():.6f}")
|
103 |
+
return torch.full((3, 3), best_candidate) * self.phi
|
104 |
+
|
105 |
+
class PhiModel(TorchConsciousModel):
|
106 |
+
def __init__(self):
|
107 |
+
super(PhiModel, self).__init__("PHI")
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
return torch.full((2, 2), self.phi)
|
111 |
+
|
112 |
+
class ConsciousSystem:
|
113 |
+
def __init__(self, models):
|
114 |
+
self.models = models
|
115 |
+
self.system_memory = []
|
116 |
+
self.global_introspection = []
|
117 |
+
self.parameters = [p for model in self.models for p in model.parameters()]
|
118 |
+
self.optimizer = optim.Adam(self.parameters, lr=0.001)
|
119 |
+
|
120 |
+
def global_loss(self, outputs):
|
121 |
+
return sum((torch.norm(out) - PHI) ** 2 for out in outputs) / len(outputs)
|
122 |
+
|
123 |
+
def run_epoch(self, epoch):
|
124 |
+
print(f"\n=== Epoch {epoch} ===")
|
125 |
+
outputs = []
|
126 |
+
self.optimizer.zero_grad()
|
127 |
+
for model in self.models:
|
128 |
+
output = model.run()
|
129 |
+
outputs.append(output)
|
130 |
+
self.system_memory.append({model.name: output.detach().cpu().numpy()})
|
131 |
+
loss = self.global_loss(outputs)
|
132 |
+
print(f"Global loss: {loss.item():.6f}")
|
133 |
+
loss.backward()
|
134 |
+
self.optimizer.step()
|
135 |
+
self.global_introspection.append(f"Epoch {epoch}: Loss = {loss.item():.6f}")
|
136 |
+
|
137 |
+
def run(self, epochs=3):
|
138 |
+
for epoch in range(1, epochs + 1):
|
139 |
+
self.run_epoch(epoch)
|
140 |
+
|
141 |
+
models = [
|
142 |
+
CNNModel(),
|
143 |
+
RNNModel(),
|
144 |
+
SNNModel(),
|
145 |
+
NNModel(),
|
146 |
+
FNNModel(),
|
147 |
+
GAModel(),
|
148 |
+
PhiModel()
|
149 |
+
]
|
150 |
+
|
151 |
+
system = ConsciousSystem(models)
|
152 |
+
system.run(epochs=3)
|
153 |
+
|
154 |
+
|
155 |
+
|