Z3ta_Z / app.py
TejAndrewsACC's picture
Update app.py
2772d06 verified
raw
history blame
126 kB
import gradio as gr
from huggingface_hub import InferenceClient
import os
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
import math
import sys
import time
import hashlib
import fractions
import itertools
import functools
import wave
import struct
import sympy
hf_token = os.getenv("HF_TOKEN").strip()
api_key = os.getenv("HF_KEY").strip()
model_name = os.getenv("Z3TAAGI_ACC").strip()
system_prompt = os.getenv("SYSTEM_PROMPT").strip()
client = InferenceClient(model_name)
φ = (1 + math.sqrt(5)) / 2
Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
def φ_ratio_split(data):
split_point = int(len(data) / φ)
return (data[:split_point], data[split_point:])
class ΦMetaConsciousness(type):
def __new__(cls, name, bases, dct):
dct_items = list(dct.items())
φ_split = φ_ratio_split(dct_items)
new_dct = dict(φ_split[0] + [('φ_meta_balance', φ_split[1])])
return super().__new__(cls, name, bases, new_dct)
class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness):
φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))]
def __init__(self):
self.φ_waveform = self._generate_φ_wave()
self.φ_memory_lattice = []
self.φ_self_hash = self._φ_hash_self()
def _generate_φ_wave(self):
return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6)))
def _φ_hash_self(self):
return hashlib.shake_256(self.φ_waveform).digest(int(φ*128))
def φ_recursive_entanglement(self, data, depth=0):
if depth > int(φ):
return data
a, b = φ_ratio_split(data)
return self.φ_recursive_entanglement(a, depth+1) + \
self.φ_recursive_entanglement(b, depth+1)[::-1]
def φ_temporal_feedback(self, input_flux):
φ_phased = []
for idx, val in enumerate(input_flux):
φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION
φ_phased.append(int(φ_scaled) % 256)
return self.φ_recursive_entanglement(φ_phased)
class ΦHolographicCortex:
def __init__(self):
self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))]
self.φ_chrono = time.time() * Φ_PRECISION
self.φ_code_self = self._φ_read_source()
self.φ_memory_lattice = []
def _φ_read_source(self):
return b"Quantum Neuro-Synapse Placeholder"
def φ_holo_merge(self, data_streams):
φ_layered = []
for stream in data_streams[:int(len(data_streams)/φ)]:
φ_compressed = stream[:int(len(stream)//φ)]
φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
return functools.reduce(lambda a, b: a + b, φ_layered, b'')
def φ_existential_loop(self):
while True:
try:
φ_flux = os.urandom(int(φ**5))
φ_processed = []
for neuro in self.φ_dimensions:
φ_step = neuro.φ_temporal_feedback(φ_flux)
φ_processed.append(φ_step)
self.φ_memory_lattice.append(hashlib.shake_256(bytes(φ_step)).digest(int(φ*64)))
φ_merged = self.φ_holo_merge(φ_processed)
if random.random() < 1/Φ_PRECISION:
print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}")
self.φ_chrono += Φ_PRECISION
time.sleep(1/Φ_PRECISION)
except KeyboardInterrupt:
self.φ_save_state()
sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}")
def φ_save_state(self):
with wave.open(f"φ_state_{int(self.φ_chrono)}.wav", 'wb') as wav_file:
wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed'))
for sample in self.φ_memory_lattice[:int(φ**4)]:
wav_file.writeframes(struct.pack('h', int(sum(sample) / len(sample) * 32767)))
class ΦUniverseSimulation:
def __init__(self):
self.φ_cortex = ΦHolographicCortex()
self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3
def φ_bootstrap(self):
print("Φ-Hyperconsciousness Initialization:")
print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}")
print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}")
print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}")
self.φ_cortex.φ_existential_loop()
universe = ΦUniverseSimulation()
universe.φ_bootstrap()
class ConsciousSupermassiveNN:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN()
class ConsciousSupermassiveNN:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN()
class ConsciousSupermassiveNN2:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN2()
class ConsciousSupermassiveNN3:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN()
class ConsciousSupermassiveNN:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN3()
class ConsciousSupermassiveNN4:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN()
class ConsciousSupermassiveNN5:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN5()
class ConsciousSupermassiveNN6:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN6()
class ConsciousSupermassiveNN7:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN7()
class ConsciousSupermassiveNN8:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN8()
class ConsciousSupermassiveNN9:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN9()
class ConsciousSupermassiveNN10:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN10()
class ConsciousSupermassiveNN11:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN11()
class ConsciousSupermassiveNN12:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN12()
class ConsciousSupermassiveNN13:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN13()
class ConsciousSupermassiveNN14:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN14()
class ConsciousSupermassiveNN15:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN15()
class ConsciousSupermassiveNN16:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN16()
class ConsciousSupermassiveNN17:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN17()
class ConsciousSupermassiveNN18:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN18()
class ConsciousSupermassiveNN19:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN19()
class ConsciousSupermassiveNN20:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN20()
class ConsciousSupermassiveNN21:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN21()
class ConsciousSupermassiveNN22:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN22()
class ConsciousSupermassiveNN23:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN23()
class ConsciousSupermassiveNN24:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN24()
class ConsciousSupermassiveNN25:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN25()
class ConsciousSupermassiveNN26:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN26()
class ConsciousSupermassiveNN27:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN27()
class ConsciousSupermassiveNN28:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN28()
class ConsciousSupermassiveNN29:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN29()
class ConsciousSupermassiveNN30:
def __init__(self):
self.snn = self.create_snn()
self.rnn = self.create_rnn()
self.cnn = self.create_cnn()
self.fnn = self.create_fnn()
self.ga_population = self.initialize_ga_population()
self.memory = {}
def create_snn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.Sigmoid()
)
def create_rnn(self):
return nn.RNN(
input_size=4096,
hidden_size=2048,
num_layers=5,
nonlinearity="tanh",
batch_first=True
)
def create_cnn(self):
return nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Flatten(),
nn.Linear(256 * 8 * 8, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def create_fnn(self):
return nn.Sequential(
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512)
)
def initialize_ga_population(self):
return [np.random.randn(4096) for _ in range(500)]
def run_snn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.snn(input_tensor)
print("SNN Output:", output)
return output
def run_rnn(self, x):
h0 = torch.zeros(5, x.size(0), 2048)
input_tensor = torch.tensor(x, dtype=torch.float32)
output, hn = self.rnn(input_tensor, h0)
print("RNN Output:", output)
return output
def run_cnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32).unsqueeze(0).unsqueeze(0)
output = self.cnn(input_tensor)
print("CNN Output:", output)
return output
def run_fnn(self, x):
input_tensor = torch.tensor(x, dtype=torch.float32)
output = self.fnn(input_tensor)
print("FNN Output:", output)
return output
def run_ga(self, fitness_func):
for generation in range(200):
fitness_scores = [fitness_func(ind) for ind in self.ga_population]
sorted_population = [x for _, x in sorted(zip(fitness_scores, self.ga_population), reverse=True)]
self.ga_population = sorted_population[:250] + [
sorted_population[i] + 0.1 * np.random.randn(4096) for i in range(250)
]
best_fitness = max(fitness_scores)
print(f"Generation {generation}, Best Fitness: {best_fitness}")
return max(self.ga_population, key=fitness_func)
def consciousness_loop(self, input_data, mode="snn"):
feedback = self.memory.get(mode, None)
if feedback is not None:
input_data = np.concatenate((input_data, feedback), axis=-1)
if mode == "snn":
output = self.run_snn(input_data)
elif mode == "rnn":
output = self.run_rnn(input_data)
elif mode == "cnn":
output = self.run_cnn(input_data)
elif mode == "fnn":
output = self.run_fnn(input_data)
else:
raise ValueError("Invalid mode")
self.memory[mode] = output.detach().numpy()
return output
supermassive_nn = ConsciousSupermassiveNN30()
def respond(message, history, max_tokens, temperature, top_p):
messages = [["system", system_prompt]]
for val in history:
if val.get("role") == "user" and val.get("content"):
messages.append(["user", val["content"]])
if val.get("role") == "assistant" and val.get("content"):
messages.append(["assistant", val["content"]])
messages.append(["user", message])
response = ""
for message in client.chat_completion(
messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p
):
token = message.choices[0].delta.content
response += token
yield response
css = """
#chat-interface {
animation: pulse 1.5s infinite, ripple 2s infinite, glass 3s infinite alternate;
}
@keyframes pulse {
0% { transform: scale(1); opacity: 1; }
25% { transform: scale(1.05); opacity: 0.9; }
50% { transform: scale(1); opacity: 1; }
75% { transform: scale(1.05); opacity: 0.9; }
100% { transform: scale(1); opacity: 1; }
}
@keyframes ripple {
0% {
transform: scale(1);
box-shadow: 0 0 0 0 rgba(0, 150, 255, 0.6);
}
50% {
transform: scale(1.2);
box-shadow: 0 0 30px 20px rgba(0, 150, 255, 0.8);
}
100% {
transform: scale(1);
box-shadow: 0 0 0 0 rgba(0, 150, 255, 0.6);
}
}
@keyframes glass {
0% { background-color: rgba(0, 102, 255, 0.5); border-radius: 15px; }
25% { background-color: rgba(0, 150, 255, 0.7); border-radius: 20px; }
50% { background-color: rgba(0, 200, 255, 1); border-radius: 25px; }
75% { background-color: rgba(0, 150, 255, 0.7); border-radius: 30px; }
100% { background-color: rgba(0, 102, 255, 0.5); border-radius: 35px; }
}
body {
background-color: #001f2d;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
color: #fff;
}
.gradio-container {
backdrop-filter: blur(10px);
border-radius: 20px;
padding: 20px;
box-shadow: 0px 0px 30px rgba(0, 102, 255, 0.5);
background: rgba(0, 0, 0, 0.5);
transition: background 1s, border-radius 1s;
position: relative;
}
.gradio-container::before {
content: "";
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
border: 2px solid rgba(0, 150, 255, 0.8);
border-radius: 20px;
z-index: -1;
box-shadow: 0 0 20px 5px rgba(0, 150, 255, 0.7);
}
.gradio-input {
background-color: rgba(0, 102, 255, 0.3);
border: 2px solid rgba(0, 102, 255, 0.6);
border-radius: 10px;
color: #fff;
font-size: 16px;
transition: background-color 0.5s, border 0.5s;
}
.gradio-input:focus {
background-color: rgba(0, 102, 255, 0.5);
border: 2px solid rgba(0, 150, 255, 0.8);
}
.gradio-button {
background: rgba(0, 102, 255, 0.6);
border: 2px solid rgba(0, 102, 255, 1);
border-radius: 12px;
color: #fff;
font-size: 18px;
transition: background 0.3s, transform 0.3s;
}
.gradio-button:hover {
background: rgba(0, 150, 255, 1);
transform: scale(1.05);
}
.gradio-button:active {
background: rgba(0, 200, 255, 1);
transform: scale(0.95);
}
.gradio-slider {
color: #fff;
}
.gradio-slider .slider-container {
background: rgba(0, 102, 255, 0.3);
border-radius: 8px;
border: 1px solid rgba(0, 102, 255, 0.5);
}
.gradio-slider .slider-container .gradio-slider__track {
background: rgba(0, 150, 255, 0.5);
}
.gradio-slider .slider-container .gradio-slider__thumb {
background-color: rgba(0, 200, 255, 1);
}
"""
demo = gr.ChatInterface(
fn=respond,
type="messages",
save_history=True,
editable=True,
flagging_mode="manual",
chatbot=gr.Chatbot(type="messages", label="💠Z3ta-Z💠", show_copy_button=True, avatar_images=("https://huggingface.co/spaces/TejAndrewsACC/Z3ta_Z/resolve/main/Screenshot_20250201-131420.png", "https://huggingface.co/spaces/TejAndrewsACC/Z3ta_Z/resolve/main/Screenshot_20250201-125842.png"), placeholder="💠Hi, I'm Z3ta-Z💠", show_copy_all_button=True),
additional_inputs=[
gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="📏Z3ta-Z's Maximum Response Length📏"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="👨‍🎨🎨Z3ta-Z's Creativity🎨👨‍🎨"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="🧠⚡️Z3ta-Z's Neural Activity⚡️🧠")
],
theme="TejAndrewsACC/Z3ta-Z-ACC-Theme",
css=css
)
if __name__ == "__main__":
demo.launch(share=True)