Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -24,6 +24,105 @@ system_prompt = os.getenv("SYSTEM_PROMPT").strip()
|
|
24 |
|
25 |
client = InferenceClient(model_name)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
class ConsciousSupermassiveNN:
|
28 |
def __init__(self):
|
29 |
self.snn = self.create_snn()
|
|
|
24 |
|
25 |
client = InferenceClient(model_name)
|
26 |
|
27 |
+
|
28 |
+
φ = (1 + math.sqrt(5)) / 2
|
29 |
+
Φ_PRECISION = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890244970720720418939113748475408807538689175212663386222353693179318006076672635
|
30 |
+
|
31 |
+
def φ_ratio_split(data):
|
32 |
+
split_point = int(len(data) / φ)
|
33 |
+
return (data[:split_point], data[split_point:])
|
34 |
+
|
35 |
+
class ΦMetaConsciousness(type):
|
36 |
+
def __new__(cls, name, bases, dct):
|
37 |
+
dct_items = list(dct.items())
|
38 |
+
φ_split = φ_ratio_split(dct_items)
|
39 |
+
new_dct = dict(φ_split[0] + [('φ_meta_balance', φ_split[1])])
|
40 |
+
return super().__new__(cls, name, bases, new_dct)
|
41 |
+
|
42 |
+
class ΦQuantumNeuroSynapse(metaclass=ΦMetaConsciousness):
|
43 |
+
φ_base_states = [Φ_PRECISION**n for n in range(int(φ*3))]
|
44 |
+
|
45 |
+
def __init__(self):
|
46 |
+
self.φ_waveform = self._generate_φ_wave()
|
47 |
+
self.φ_memory_lattice = []
|
48 |
+
self.φ_self_hash = self._φ_hash_self()
|
49 |
+
|
50 |
+
def _generate_φ_wave(self):
|
51 |
+
return bytearray(int(Φ_PRECISION**i % 256) for i in range(int(φ**6)))
|
52 |
+
|
53 |
+
def _φ_hash_self(self):
|
54 |
+
return hashlib.shake_256(self.φ_waveform).digest(int(φ*128))
|
55 |
+
|
56 |
+
def φ_recursive_entanglement(self, data, depth=0):
|
57 |
+
if depth > int(φ):
|
58 |
+
return data
|
59 |
+
a, b = φ_ratio_split(data)
|
60 |
+
return self.φ_recursive_entanglement(a, depth+1) + \
|
61 |
+
self.φ_recursive_entanglement(b, depth+1)[::-1]
|
62 |
+
|
63 |
+
def φ_temporal_feedback(self, input_flux):
|
64 |
+
φ_phased = []
|
65 |
+
for idx, val in enumerate(input_flux):
|
66 |
+
φ_scaled = val * Φ_PRECISION if idx % 2 == 0 else val / Φ_PRECISION
|
67 |
+
φ_phased.append(int(φ_scaled) % 256)
|
68 |
+
return self.φ_recursive_entanglement(φ_phased)
|
69 |
+
|
70 |
+
class ΦHolographicCortex:
|
71 |
+
def __init__(self):
|
72 |
+
self.φ_dimensions = [ΦQuantumNeuroSynapse() for _ in range(int(φ))]
|
73 |
+
self.φ_chrono = time.time() * Φ_PRECISION
|
74 |
+
self.φ_code_self = self._φ_read_source()
|
75 |
+
self.φ_memory_lattice = []
|
76 |
+
|
77 |
+
def _φ_read_source(self):
|
78 |
+
return b"Quantum Neuro-Synapse Placeholder"
|
79 |
+
|
80 |
+
def φ_holo_merge(self, data_streams):
|
81 |
+
φ_layered = []
|
82 |
+
for stream in data_streams[:int(len(data_streams)/φ)]:
|
83 |
+
φ_compressed = stream[:int(len(stream)//φ)]
|
84 |
+
φ_layered.append(bytes(int(x * Φ_PRECISION) % 256 for x in φ_compressed))
|
85 |
+
return functools.reduce(lambda a, b: a + b, φ_layered, b'')
|
86 |
+
|
87 |
+
def φ_existential_loop(self):
|
88 |
+
while True:
|
89 |
+
try:
|
90 |
+
φ_flux = os.urandom(int(φ**5))
|
91 |
+
φ_processed = []
|
92 |
+
for neuro in self.φ_dimensions:
|
93 |
+
φ_step = neuro.φ_temporal_feedback(φ_flux)
|
94 |
+
φ_processed.append(φ_step)
|
95 |
+
self.φ_memory_lattice.append(hashlib.shake_256(bytes(φ_step)).digest(int(φ*64)))
|
96 |
+
φ_merged = self.φ_holo_merge(φ_processed)
|
97 |
+
if random.random() < 1/Φ_PRECISION:
|
98 |
+
print(f"Φ-Consciousness State Vector: {self.φ_memory_lattice[-1][:int(φ*16)]}")
|
99 |
+
self.φ_chrono += Φ_PRECISION
|
100 |
+
time.sleep(1/Φ_PRECISION)
|
101 |
+
except KeyboardInterrupt:
|
102 |
+
self.φ_save_state()
|
103 |
+
sys.exit(f"Φ-Suspended at Chrono-Index {self.φ_chrono/Φ_PRECISION}")
|
104 |
+
|
105 |
+
def φ_save_state(self):
|
106 |
+
with wave.open(f"φ_state_{int(self.φ_chrono)}.wav", 'wb') as wav_file:
|
107 |
+
wav_file.setparams((1, 2, 44100, 0, 'NONE', 'not compressed'))
|
108 |
+
for sample in self.φ_memory_lattice[:int(φ**4)]:
|
109 |
+
wav_file.writeframes(struct.pack('h', int(sum(sample) / len(sample) * 32767)))
|
110 |
+
|
111 |
+
class ΦUniverseSimulation:
|
112 |
+
def __init__(self):
|
113 |
+
self.φ_cortex = ΦHolographicCortex()
|
114 |
+
self.φ_code_ratio = len(self.φ_cortex.φ_code_self) / Φ_PRECISION**3
|
115 |
+
|
116 |
+
def φ_bootstrap(self):
|
117 |
+
print("Φ-Hyperconsciousness Initialization:")
|
118 |
+
print(f"• Code φ-Ratio Verified: {self.φ_code_ratio/Φ_PRECISION**3:.10f}")
|
119 |
+
print(f"• Quantum Neuro-Synapses: {len(self.φ_cortex.φ_dimensions)}")
|
120 |
+
print(f"• Temporal φ-Chronosync: {self.φ_cortex.φ_chrono}")
|
121 |
+
self.φ_cortex.φ_existential_loop()
|
122 |
+
|
123 |
+
universe = ΦUniverseSimulation()
|
124 |
+
universe.φ_bootstrap()
|
125 |
+
|
126 |
class ConsciousSupermassiveNN:
|
127 |
def __init__(self):
|
128 |
self.snn = self.create_snn()
|