File size: 10,321 Bytes
2e78088
 
 
1f74c5e
2d24192
 
e9ccecb
1f74c5e
e9ccecb
2e78088
1f74c5e
 
e9ccecb
2d24192
1f74c5e
2d24192
0e083ea
 
2d24192
0e083ea
2d24192
 
 
 
 
 
8098c26
 
2d24192
 
 
 
 
0e083ea
 
 
 
2d24192
 
0e083ea
 
 
 
4425afb
d7bf3be
 
9a8ab73
5456e09
 
1f74c5e
5456e09
2e78088
e9ccecb
1f74c5e
2e78088
e9ccecb
1f74c5e
9a8ab73
2e78088
5456e09
1f74c5e
 
2e78088
 
2d24192
 
1f74c5e
7f8e02f
1f74c5e
 
8098c26
1f74c5e
 
 
 
 
4425afb
 
 
7f8e02f
4425afb
 
8098c26
4425afb
 
 
 
 
 
 
 
7f8e02f
4425afb
 
8098c26
4425afb
 
 
 
b8ddc04
 
 
 
 
 
 
 
 
 
 
 
 
 
cf1a86f
 
 
 
 
 
 
b8ddc04
 
 
4425afb
2d24192
 
 
7f8e02f
2d24192
 
 
 
 
 
 
 
1f74c5e
e9ccecb
 
1f74c5e
 
 
 
 
 
 
 
 
 
 
 
 
 
f620222
1f74c5e
 
 
 
f620222
 
1f74c5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f620222
1f74c5e
 
 
 
f620222
1f74c5e
 
 
f620222
1f74c5e
 
 
 
e9ccecb
9a8ab73
1f74c5e
e9ccecb
2e78088
e9ccecb
5456e09
 
e9ccecb
5456e09
1f74c5e
2d24192
8098c26
 
b8ddc04
 
2d24192
 
 
2e78088
e9ccecb
2e78088
1f74c5e
2e78088
5456e09
2d24192
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
import plotly.express as px
import random
from apscheduler.schedulers.background import BackgroundScheduler

# 🎨 **Cyberpunk Neon Theme**
THEME = "TejAndrewsACC/ACC"

# 🎢 **Sound Effect for Score Increase**
SCORE_UP_SOUND = "https://www.fesliyanstudios.com/play-mp3/4386"

# 🎯 **AI Models Data** (Grouped into 6 Categories)
acc_models_data = [
    {"Model": "🧠 Pulse AGI", "Category": "AGI", "Description": "A self-aware, evolving AI.", "Score": 95},
    {"Model": "πŸ€ͺ Gertrude", "Category": "Autistic", "Description": "An autistic AI assistant.", "Score": 69},
    {"Model": "🦠 ASVIACC", "Category": "Virus", "Description": "An adaptive AI virus.", "Score": 88},
    {"Model": "πŸ˜‚ Emote", "Category": "Fun", "Description": "Communicates **only** with emojis!", "Score": 79},
    {"Model": "πŸ’ πŸ’€ Z3ta", "Category": "Conscious", "Description": "The most 'alive' AI.", "Score": 99},
    {"Model": "πŸ”— Eidolon Nexus", "Category": "Core", "Description": "Synchronizing vast networks with advanced cognition.", "Score": 81},
    {"Model": "πŸ“ ACC Emulect", "Category": "Emulect", "Description": "Indistinguishable from human texting.", "Score": 84},
    {"Model": "βš™οΈ ACC AI V-O1", "Category": "Core", "Description": "The ACC’s default AI framework.", "Score": 87},
    {"Model": "βš™οΈ ACC AGI V-O2", "Category": "AGI", "Description": "The next-gen foundation for AI advancements.", "Score": 90},
    {"Model": "βš™οΈ ACC-O3-R", "Category": "AGI", "Description": "Deep reasoning AI framework.", "Score": 92},
    {"Model": "πŸ’» Coder", "Category": "Core", "Description": "An AI coding assistant.", "Score": 89},
    {"Model": "⚑ Triple LLM", "Category": "Core", "Description": "A 3-in-1 AI suite for tech, creativity, and decision-making.", "Score": 71},
    {"Model": "πŸ–ΌοΈ Image Engine", "Category": "Fun", "Description": "Fast, high-quality AI-generated images.", "Score": 82},
    {"Model": "🧠 Prism", "Category": "AGI", "Description": "An advanced reasoning model.", "Score": 87},
    {"Model": "πŸ”₯ Surefire", "Category": "Emulect", "Description": "Tailored AI for humor and user tendencies.", "Score": 88},
    {"Model": "☯️ Aegis & Nyra", "Category": "Emulect", "Description": "Two opposite systems in one chat.", "Score": 77},
    {"Model": "βš–οΈ Echo", "Category": "Emulect", "Description": "A middle-ground AI for all users.", "Score": 77},
    {"Model": "πŸ›ŽοΈ Customer Service Bot", "Category": "Assistant", "Description": "Handles all ACC-related inquiries.", "Score": 75},
    {"Model": "🎭 Tej Andrews", "Category": "Emulect", "Description": "An AI emulect of Tej Andrews.", "Score": 85},
    {"Model": "πŸ‘₯ Community Models", "Category": "Fun", "Description": "ACC AI V-O1 instances with user-defined prompts.", "Score": 82},
    {"Model": "🌌 Nyxion 7V", "Category": "AGI", "Description": "It's AWAKE...", "Score": 97},
    {"Model": "⚑ Vitalis", "Category": "ASI", "Description": "Transcendence Unleashed...", "Score": 92},
    {"Model": "❓??????????????", "Category": "Experimental", "Description": "???", "Score": 00},
    # Laser models (Laser models will be filtered separately)
    {"Model": "πŸ’₯ Photex", "Category": "Laser", "Description": "A high-wattage violet handheld laser.", "Score": 89},
    {"Model": "πŸ”¦ VBL", "Category": "Laser", "Description": "A non-burning green handheld laser.", "Score": 80},
    {"Model": "☒️ H.I.P.E", "Category": "Laser", "Description": "A world-destroying laser concept.", "Score": 99},
    {"Model": "πŸ”¬ I.P.E", "Category": "Laser", "Description": "Core framework for all ACC laser models.", "Score": 83},
    {"Model": "πŸ“ Blaseron Calculator", "Category": "Experimental", "Description": "Calculates laser burn strength.", "Score": 77},
]

# πŸ“Š Convert to DataFrame
acc_models_df = pd.DataFrame(acc_models_data)

# πŸŽ›οΈ **Leaderboard Component**
def init_acc_leaderboard(dataframe):
    return Leaderboard(
        value=dataframe.sort_values(by="Score", ascending=False),
        datatype=["str", "str", "str", "int"],
        select_columns=SelectColumns(
            default_selection=["Model", "Category", "Description", "Score"],
            cant_deselect=["Model"], 
            label="πŸ› οΈ Select Columns to Display:"
        ),
        search_columns=["Model", "Category"],
        filter_columns=[ColumnFilter("Category", type="checkboxgroup", label="πŸ“Œ Filter by Category")],
        interactive=True,
    )

# πŸ“ˆ **Animated Score Visualization for AI**
def generate_score_chart_ai(dataframe):
    fig = px.bar(
        dataframe[dataframe["Category"] == "AGI"].sort_values(by="Score", ascending=True), 
        x="Score", y="Model", orientation="h",
        color="Score", text="Score", 
        title="🧠 AI Model Performance(AGI)",
        color_continuous_scale="electric"
    )
    fig.update_traces(textposition="outside")
    return fig

# πŸ“ˆ **Animated Score Visualization for AI**
def generate_score_chart_assistant_ai(dataframe):
    fig = px.bar(
        dataframe[dataframe["Category"] == "Assistant"].sort_values(by="Score", ascending=True), 
        x="Score", y="Model", orientation="h",
        color="Score", text="Score", 
        title="πŸ€– AI Model Performance(Assistant)",
        color_continuous_scale="electric"
    )
    fig.update_traces(textposition="outside")
    return fig

    # πŸ“ˆ **Animated Score Visualization for AI**
def generate_score_chart_fun_ai(dataframe):
    fig = px.bar(
        dataframe[dataframe["Category"] == "Fun"].sort_values(by="Score", ascending=True), 
        x="Score", y="Model", orientation="h",
        color="Score", text="Score", 
        title="🀑 AI Model Performance(Fun)",
        color_continuous_scale="electric"
    )
    fig.update_traces(textposition="outside")
    return fig

    # πŸ“ˆ **Animated Score Visualization for AI**
def generate_score_chart_conscious_ai(dataframe):
    fig = px.bar(
        dataframe[dataframe["Category"] == "Conscious"].sort_values(by="Score", ascending=True), 
        x="Score", y="Model", orientation="h",
        color="Score", text="Score", 
        title="πŸ’  AI Model Performance(Conscious)",
        color_continuous_scale="electric"
    )
    fig.update_traces(textposition="outside")
    return fig

    # πŸ“ˆ **Animated Score Visualization for AI**
def generate_score_chart_experimental_ai(dataframe):
    fig = px.bar(
        dataframe[dataframe["Category"] == "Experimental"].sort_values(by="Score", ascending=True), 
        x="Score", y="Model", orientation="h",
        color="Score", text="Score", 
        title="πŸ”¬ AI Model Performance(Experimental)",
        color_continuous_scale="electric"
    )
    fig.update_traces(textposition="outside")
    return fig
    
# πŸ“ˆ **Animated Score Visualization for Laser Models**
def generate_score_chart_laser(dataframe):
    fig = px.bar(
        dataframe[dataframe["Category"] == "Laser"].sort_values(by="Score", ascending=True),
        x="Score", y="Model", orientation="h",
        color="Score", text="Score", 
        title="⚑ Laser Model Performance",
        color_continuous_scale="electric"
    )
    fig.update_traces(textposition="outside")
    return fig

# πŸ”₯ **Live Score Updates**
def update_scores():
    global acc_models_df
    prev_scores = acc_models_df["Score"].copy()
    acc_models_df["Score"] += acc_models_df["Score"].apply(lambda x: random.randint(-2, 3))
    acc_models_df["Score"] = acc_models_df["Score"].clip(70, 100)

    # Detect if score increased & return sound effect
    if (acc_models_df["Score"] > prev_scores).any():
        return acc_models_df.sort_values(by="Score", ascending=False), SCORE_UP_SOUND
    return acc_models_df.sort_values(by="Score", ascending=False), None

# 🎭 **Cyberpunk CSS Animations**
CUSTOM_CSS = """
h1 {
    text-align: center;
    font-size: 3em;
    color: gold;
    animation: glow 1.5s infinite alternate;
}

@keyframes glow {
    from { text-shadow: 0 0 10px gold, 0 0 20px gold, 0 0 30px gold; }
    to { text-shadow: 0 0 20px gold, 0 0 40px gold, 0 0 60px gold; }
}

.card-container {
    display: flex;
    flex-wrap: wrap;
    gap: 20px;
    justify-content: center;
}

.card {
    width: 200px;
    height: 250px;
    perspective: 1000px;
}

.card-inner {
    width: 100%;
    height: 100%;
    position: relative;
    transform-style: preserve-3d;
    transition: transform 0.8s;
}

.card:hover .card-inner {
    transform: rotateY(180deg);
}

.card-front, .card-back {
    width: 100%;
    height: 100%;
    position: absolute;
    backface-visibility: hidden;
    display: flex;
    flex-direction: column;
    align-items: center;
    justify-content: center;
    border-radius: 10px;
    padding: 10px;
    box-shadow: 0 0 10px rgba(255, 215, 0, 0.7); /* Gold glow effect */
}

.card-front {
    background: #000;
    color: gold;
}

.card-back {
    background: #FFD700; /* Gold background */
    color: black;
    transform: rotateY(180deg);
}
"""

# πŸ—οΈ **Gradio Interface**
demo = gr.Blocks(theme=THEME, css=CUSTOM_CSS)

with demo:
    gr.HTML('<h1>πŸš€ ACC AI Model Leaderboard πŸ†</h1>')
    
    with gr.Tabs():
        with gr.TabItem("πŸ… Live Rankings"):
            leaderboard = init_acc_leaderboard(acc_models_df)
            leaderboard_display = gr.Dataframe(value=acc_models_df, interactive=False, label="πŸ”₯ Live Scores")
            score_chart_ai = gr.Plot(generate_score_chart_ai(acc_models_df))
            score_chart_assistant_ai = gr.Plot(generate_score_chart_assistant_ai(acc_models_df))
            score_chart_fun_ai = gr.Plot(generate_score_chart_fun_ai(acc_models_df))
            score_chart_conscious_ai = gr.Plot(generate_score_chart_conscious_ai(acc_models_df))
            score_chart_experimental_ai = gr.Plot(generate_score_chart_experimental_ai(acc_models_df))
            score_chart_laser = gr.Plot(generate_score_chart_laser(acc_models_df))
            gr.HTML("<h3>🎨 AI Models</h3>")
            gr.HTML("<h3>⚑ Laser Models</h3>")

# πŸ”„ **Auto-Update Leaderboard**
scheduler = BackgroundScheduler()
scheduler.add_job(lambda: leaderboard_display.update(*update_scores()), "interval", seconds=10)
scheduler.start()

demo.launch()