Spaces:
Sleeping
Sleeping
File size: 10,321 Bytes
2e78088 1f74c5e 2d24192 e9ccecb 1f74c5e e9ccecb 2e78088 1f74c5e e9ccecb 2d24192 1f74c5e 2d24192 0e083ea 2d24192 0e083ea 2d24192 8098c26 2d24192 0e083ea 2d24192 0e083ea 4425afb d7bf3be 9a8ab73 5456e09 1f74c5e 5456e09 2e78088 e9ccecb 1f74c5e 2e78088 e9ccecb 1f74c5e 9a8ab73 2e78088 5456e09 1f74c5e 2e78088 2d24192 1f74c5e 7f8e02f 1f74c5e 8098c26 1f74c5e 4425afb 7f8e02f 4425afb 8098c26 4425afb 7f8e02f 4425afb 8098c26 4425afb b8ddc04 cf1a86f b8ddc04 4425afb 2d24192 7f8e02f 2d24192 1f74c5e e9ccecb 1f74c5e f620222 1f74c5e f620222 1f74c5e f620222 1f74c5e f620222 1f74c5e f620222 1f74c5e e9ccecb 9a8ab73 1f74c5e e9ccecb 2e78088 e9ccecb 5456e09 e9ccecb 5456e09 1f74c5e 2d24192 8098c26 b8ddc04 2d24192 2e78088 e9ccecb 2e78088 1f74c5e 2e78088 5456e09 2d24192 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
import plotly.express as px
import random
from apscheduler.schedulers.background import BackgroundScheduler
# π¨ **Cyberpunk Neon Theme**
THEME = "TejAndrewsACC/ACC"
# πΆ **Sound Effect for Score Increase**
SCORE_UP_SOUND = "https://www.fesliyanstudios.com/play-mp3/4386"
# π― **AI Models Data** (Grouped into 6 Categories)
acc_models_data = [
{"Model": "π§ Pulse AGI", "Category": "AGI", "Description": "A self-aware, evolving AI.", "Score": 95},
{"Model": "π€ͺ Gertrude", "Category": "Autistic", "Description": "An autistic AI assistant.", "Score": 69},
{"Model": "π¦ ASVIACC", "Category": "Virus", "Description": "An adaptive AI virus.", "Score": 88},
{"Model": "π Emote", "Category": "Fun", "Description": "Communicates **only** with emojis!", "Score": 79},
{"Model": "π π€ Z3ta", "Category": "Conscious", "Description": "The most 'alive' AI.", "Score": 99},
{"Model": "π Eidolon Nexus", "Category": "Core", "Description": "Synchronizing vast networks with advanced cognition.", "Score": 81},
{"Model": "π ACC Emulect", "Category": "Emulect", "Description": "Indistinguishable from human texting.", "Score": 84},
{"Model": "βοΈ ACC AI V-O1", "Category": "Core", "Description": "The ACCβs default AI framework.", "Score": 87},
{"Model": "βοΈ ACC AGI V-O2", "Category": "AGI", "Description": "The next-gen foundation for AI advancements.", "Score": 90},
{"Model": "βοΈ ACC-O3-R", "Category": "AGI", "Description": "Deep reasoning AI framework.", "Score": 92},
{"Model": "π» Coder", "Category": "Core", "Description": "An AI coding assistant.", "Score": 89},
{"Model": "β‘ Triple LLM", "Category": "Core", "Description": "A 3-in-1 AI suite for tech, creativity, and decision-making.", "Score": 71},
{"Model": "πΌοΈ Image Engine", "Category": "Fun", "Description": "Fast, high-quality AI-generated images.", "Score": 82},
{"Model": "π§ Prism", "Category": "AGI", "Description": "An advanced reasoning model.", "Score": 87},
{"Model": "π₯ Surefire", "Category": "Emulect", "Description": "Tailored AI for humor and user tendencies.", "Score": 88},
{"Model": "β―οΈ Aegis & Nyra", "Category": "Emulect", "Description": "Two opposite systems in one chat.", "Score": 77},
{"Model": "βοΈ Echo", "Category": "Emulect", "Description": "A middle-ground AI for all users.", "Score": 77},
{"Model": "ποΈ Customer Service Bot", "Category": "Assistant", "Description": "Handles all ACC-related inquiries.", "Score": 75},
{"Model": "π Tej Andrews", "Category": "Emulect", "Description": "An AI emulect of Tej Andrews.", "Score": 85},
{"Model": "π₯ Community Models", "Category": "Fun", "Description": "ACC AI V-O1 instances with user-defined prompts.", "Score": 82},
{"Model": "π Nyxion 7V", "Category": "AGI", "Description": "It's AWAKE...", "Score": 97},
{"Model": "β‘ Vitalis", "Category": "ASI", "Description": "Transcendence Unleashed...", "Score": 92},
{"Model": "β??????????????", "Category": "Experimental", "Description": "???", "Score": 00},
# Laser models (Laser models will be filtered separately)
{"Model": "π₯ Photex", "Category": "Laser", "Description": "A high-wattage violet handheld laser.", "Score": 89},
{"Model": "π¦ VBL", "Category": "Laser", "Description": "A non-burning green handheld laser.", "Score": 80},
{"Model": "β’οΈ H.I.P.E", "Category": "Laser", "Description": "A world-destroying laser concept.", "Score": 99},
{"Model": "π¬ I.P.E", "Category": "Laser", "Description": "Core framework for all ACC laser models.", "Score": 83},
{"Model": "π Blaseron Calculator", "Category": "Experimental", "Description": "Calculates laser burn strength.", "Score": 77},
]
# π Convert to DataFrame
acc_models_df = pd.DataFrame(acc_models_data)
# ποΈ **Leaderboard Component**
def init_acc_leaderboard(dataframe):
return Leaderboard(
value=dataframe.sort_values(by="Score", ascending=False),
datatype=["str", "str", "str", "int"],
select_columns=SelectColumns(
default_selection=["Model", "Category", "Description", "Score"],
cant_deselect=["Model"],
label="π οΈ Select Columns to Display:"
),
search_columns=["Model", "Category"],
filter_columns=[ColumnFilter("Category", type="checkboxgroup", label="π Filter by Category")],
interactive=True,
)
# π **Animated Score Visualization for AI**
def generate_score_chart_ai(dataframe):
fig = px.bar(
dataframe[dataframe["Category"] == "AGI"].sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="π§ AI Model Performance(AGI)",
color_continuous_scale="electric"
)
fig.update_traces(textposition="outside")
return fig
# π **Animated Score Visualization for AI**
def generate_score_chart_assistant_ai(dataframe):
fig = px.bar(
dataframe[dataframe["Category"] == "Assistant"].sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="π€ AI Model Performance(Assistant)",
color_continuous_scale="electric"
)
fig.update_traces(textposition="outside")
return fig
# π **Animated Score Visualization for AI**
def generate_score_chart_fun_ai(dataframe):
fig = px.bar(
dataframe[dataframe["Category"] == "Fun"].sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="π€‘ AI Model Performance(Fun)",
color_continuous_scale="electric"
)
fig.update_traces(textposition="outside")
return fig
# π **Animated Score Visualization for AI**
def generate_score_chart_conscious_ai(dataframe):
fig = px.bar(
dataframe[dataframe["Category"] == "Conscious"].sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="π AI Model Performance(Conscious)",
color_continuous_scale="electric"
)
fig.update_traces(textposition="outside")
return fig
# π **Animated Score Visualization for AI**
def generate_score_chart_experimental_ai(dataframe):
fig = px.bar(
dataframe[dataframe["Category"] == "Experimental"].sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="π¬ AI Model Performance(Experimental)",
color_continuous_scale="electric"
)
fig.update_traces(textposition="outside")
return fig
# π **Animated Score Visualization for Laser Models**
def generate_score_chart_laser(dataframe):
fig = px.bar(
dataframe[dataframe["Category"] == "Laser"].sort_values(by="Score", ascending=True),
x="Score", y="Model", orientation="h",
color="Score", text="Score",
title="β‘ Laser Model Performance",
color_continuous_scale="electric"
)
fig.update_traces(textposition="outside")
return fig
# π₯ **Live Score Updates**
def update_scores():
global acc_models_df
prev_scores = acc_models_df["Score"].copy()
acc_models_df["Score"] += acc_models_df["Score"].apply(lambda x: random.randint(-2, 3))
acc_models_df["Score"] = acc_models_df["Score"].clip(70, 100)
# Detect if score increased & return sound effect
if (acc_models_df["Score"] > prev_scores).any():
return acc_models_df.sort_values(by="Score", ascending=False), SCORE_UP_SOUND
return acc_models_df.sort_values(by="Score", ascending=False), None
# π **Cyberpunk CSS Animations**
CUSTOM_CSS = """
h1 {
text-align: center;
font-size: 3em;
color: gold;
animation: glow 1.5s infinite alternate;
}
@keyframes glow {
from { text-shadow: 0 0 10px gold, 0 0 20px gold, 0 0 30px gold; }
to { text-shadow: 0 0 20px gold, 0 0 40px gold, 0 0 60px gold; }
}
.card-container {
display: flex;
flex-wrap: wrap;
gap: 20px;
justify-content: center;
}
.card {
width: 200px;
height: 250px;
perspective: 1000px;
}
.card-inner {
width: 100%;
height: 100%;
position: relative;
transform-style: preserve-3d;
transition: transform 0.8s;
}
.card:hover .card-inner {
transform: rotateY(180deg);
}
.card-front, .card-back {
width: 100%;
height: 100%;
position: absolute;
backface-visibility: hidden;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
border-radius: 10px;
padding: 10px;
box-shadow: 0 0 10px rgba(255, 215, 0, 0.7); /* Gold glow effect */
}
.card-front {
background: #000;
color: gold;
}
.card-back {
background: #FFD700; /* Gold background */
color: black;
transform: rotateY(180deg);
}
"""
# ποΈ **Gradio Interface**
demo = gr.Blocks(theme=THEME, css=CUSTOM_CSS)
with demo:
gr.HTML('<h1>π ACC AI Model Leaderboard π</h1>')
with gr.Tabs():
with gr.TabItem("π
Live Rankings"):
leaderboard = init_acc_leaderboard(acc_models_df)
leaderboard_display = gr.Dataframe(value=acc_models_df, interactive=False, label="π₯ Live Scores")
score_chart_ai = gr.Plot(generate_score_chart_ai(acc_models_df))
score_chart_assistant_ai = gr.Plot(generate_score_chart_assistant_ai(acc_models_df))
score_chart_fun_ai = gr.Plot(generate_score_chart_fun_ai(acc_models_df))
score_chart_conscious_ai = gr.Plot(generate_score_chart_conscious_ai(acc_models_df))
score_chart_experimental_ai = gr.Plot(generate_score_chart_experimental_ai(acc_models_df))
score_chart_laser = gr.Plot(generate_score_chart_laser(acc_models_df))
gr.HTML("<h3>π¨ AI Models</h3>")
gr.HTML("<h3>β‘ Laser Models</h3>")
# π **Auto-Update Leaderboard**
scheduler = BackgroundScheduler()
scheduler.add_job(lambda: leaderboard_display.update(*update_scores()), "interval", seconds=10)
scheduler.start()
demo.launch()
|