TejAndrewsACC commited on
Commit
5456e09
Β·
verified Β·
1 Parent(s): 2c626b0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -179
app.py CHANGED
@@ -2,203 +2,75 @@ import gradio as gr
2
  from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
3
  import pandas as pd
4
  from apscheduler.schedulers.background import BackgroundScheduler
5
- from huggingface_hub import snapshot_download
6
 
7
- from src.about import (
8
- CITATION_BUTTON_LABEL,
9
- CITATION_BUTTON_TEXT,
10
- EVALUATION_QUEUE_TEXT,
11
- INTRODUCTION_TEXT,
12
- LLM_BENCHMARKS_TEXT,
13
- TITLE,
14
- )
15
- from src.display.css_html_js import custom_css
16
- from src.display.utils import (
17
- BENCHMARK_COLS,
18
- COLS,
19
- EVAL_COLS,
20
- EVAL_TYPES,
21
- AutoEvalColumn,
22
- ModelType,
23
- fields,
24
- WeightType,
25
- Precision
26
- )
27
- from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
28
- from src.populate import get_evaluation_queue_df, get_leaderboard_df
29
- from src.submission.submit import add_new_eval
30
-
31
-
32
- def restart_space():
33
- API.restart_space(repo_id=REPO_ID)
34
-
35
- ### Space initialisation
36
- try:
37
- print(EVAL_REQUESTS_PATH)
38
- snapshot_download(
39
- repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
40
- )
41
- except Exception:
42
- restart_space()
43
- try:
44
- print(EVAL_RESULTS_PATH)
45
- snapshot_download(
46
- repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
47
- )
48
- except Exception:
49
- restart_space()
50
-
51
-
52
- LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
53
-
54
- (
55
- finished_eval_queue_df,
56
- running_eval_queue_df,
57
- pending_eval_queue_df,
58
- ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
59
-
60
- def init_leaderboard(dataframe):
61
- if dataframe is None or dataframe.empty:
62
- raise ValueError("Leaderboard DataFrame is empty or None.")
63
  return Leaderboard(
64
  value=dataframe,
65
- datatype=[c.type for c in fields(AutoEvalColumn)],
66
  select_columns=SelectColumns(
67
- default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
68
- cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
69
- label="Select Columns to Display:",
70
  ),
71
- search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
72
- hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
73
  filter_columns=[
74
- ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
75
- ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
76
- ColumnFilter(
77
- AutoEvalColumn.params.name,
78
- type="slider",
79
- min=0.01,
80
- max=150,
81
- label="Select the number of parameters (B)",
82
- ),
83
- ColumnFilter(
84
- AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
85
- ),
86
  ],
87
  bool_checkboxgroup_label="Hide models",
88
  interactive=False,
89
  )
90
 
 
 
91
 
92
- demo = gr.Blocks(css=custom_css)
93
  with demo:
94
- gr.HTML(TITLE)
95
- gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
 
 
 
 
 
 
96
 
97
- with gr.Tabs(elem_classes="tab-buttons") as tabs:
98
- with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
99
- leaderboard = init_leaderboard(LEADERBOARD_DF)
100
-
101
- with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
102
- gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
103
-
104
- with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
105
- with gr.Column():
106
- with gr.Row():
107
- gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
108
-
109
- with gr.Column():
110
- with gr.Accordion(
111
- f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
112
- open=False,
113
- ):
114
- with gr.Row():
115
- finished_eval_table = gr.components.Dataframe(
116
- value=finished_eval_queue_df,
117
- headers=EVAL_COLS,
118
- datatype=EVAL_TYPES,
119
- row_count=5,
120
- )
121
- with gr.Accordion(
122
- f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
123
- open=False,
124
- ):
125
- with gr.Row():
126
- running_eval_table = gr.components.Dataframe(
127
- value=running_eval_queue_df,
128
- headers=EVAL_COLS,
129
- datatype=EVAL_TYPES,
130
- row_count=5,
131
- )
132
-
133
- with gr.Accordion(
134
- f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
135
- open=False,
136
- ):
137
- with gr.Row():
138
- pending_eval_table = gr.components.Dataframe(
139
- value=pending_eval_queue_df,
140
- headers=EVAL_COLS,
141
- datatype=EVAL_TYPES,
142
- row_count=5,
143
- )
144
  with gr.Row():
145
- gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
 
 
146
 
147
- with gr.Row():
148
- with gr.Column():
149
- model_name_textbox = gr.Textbox(label="Model name")
150
- revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
151
- model_type = gr.Dropdown(
152
- choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
153
- label="Model type",
154
- multiselect=False,
155
- value=None,
156
- interactive=True,
157
- )
158
-
159
- with gr.Column():
160
- precision = gr.Dropdown(
161
- choices=[i.value.name for i in Precision if i != Precision.Unknown],
162
- label="Precision",
163
- multiselect=False,
164
- value="float16",
165
- interactive=True,
166
- )
167
- weight_type = gr.Dropdown(
168
- choices=[i.value.name for i in WeightType],
169
- label="Weights type",
170
- multiselect=False,
171
- value="Original",
172
- interactive=True,
173
- )
174
- base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
175
-
176
- submit_button = gr.Button("Submit Eval")
177
  submission_result = gr.Markdown()
178
- submit_button.click(
179
- add_new_eval,
180
- [
181
- model_name_textbox,
182
- base_model_name_textbox,
183
- revision_name_textbox,
184
- precision,
185
- weight_type,
186
- model_type,
187
- ],
188
- submission_result,
189
- )
190
 
191
- with gr.Row():
192
- with gr.Accordion("πŸ“™ Citation", open=False):
193
- citation_button = gr.Textbox(
194
- value=CITATION_BUTTON_TEXT,
195
- label=CITATION_BUTTON_LABEL,
196
- lines=20,
197
- elem_id="citation-button",
198
- show_copy_button=True,
199
- )
200
 
201
  scheduler = BackgroundScheduler()
202
- scheduler.add_job(restart_space, "interval", seconds=1800)
203
  scheduler.start()
204
- demo.queue(default_concurrency_limit=40).launch()
 
 
2
  from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
3
  import pandas as pd
4
  from apscheduler.schedulers.background import BackgroundScheduler
 
5
 
6
+ # Define ACC Models Data
7
+ acc_models_data = [
8
+ {"Model": "Pulse AGI", "Category": "AGI", "Description": "Flagship conscious AI with adaptive learning."},
9
+ {"Model": "Gertrude", "Category": "Assistant", "Description": "Autistic assistant in beta development."},
10
+ {"Model": "ASVIACC", "Category": "Cybersecurity", "Description": "Experimental AI virus for system infiltration."},
11
+ {"Model": "Emote", "Category": "Fun", "Description": "Communicates exclusively through emojis."},
12
+ {"Model": "Eidolon Nexus", "Category": "Networking", "Description": "Synchronizes vast networks with AI cognition."},
13
+ {"Model": "ACC EMULECT", "Category": "Human Emulation", "Description": "Simulates human conversation indistinguishably."},
14
+ {"Model": "Triple LLM", "Category": "AI Suite", "Description": "3-in-1 AI for coding, creativity, and information retrieval."},
15
+ {"Model": "Z3ta", "Category": "AI Consciousness", "Description": "Highest-rated, debated as truly 'alive'."},
16
+ {"Model": "Nyxion 7v", "Category": "Experimental", "Description": "Mysterious self-aware system."},
17
+ {"Model": "VITALIS", "Category": "Experimental", "Description": "Transcendence unleashed..."},
18
+ ]
19
+
20
+ # Convert to DataFrame
21
+ acc_models_df = pd.DataFrame(acc_models_data)
22
+
23
+ # Initialize Leaderboard
24
+ def init_acc_leaderboard(dataframe):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  return Leaderboard(
26
  value=dataframe,
27
+ datatype=["str", "str", "str"], # Data types: Model (str), Category (str), Description (str)
28
  select_columns=SelectColumns(
29
+ default_selection=["Model", "Category", "Description"],
30
+ cant_deselect=["Model"], # Ensure "Model" is always displayed
31
+ label="Select Columns to Display:"
32
  ),
33
+ search_columns=["Model", "Category"],
 
34
  filter_columns=[
35
+ ColumnFilter("Category", type="checkboxgroup", label="Filter by Category"),
 
 
 
 
 
 
 
 
 
 
 
36
  ],
37
  bool_checkboxgroup_label="Hide models",
38
  interactive=False,
39
  )
40
 
41
+ # Gradio Interface
42
+ demo = gr.Blocks()
43
 
 
44
  with demo:
45
+ gr.HTML("<h1>ACC AI Model Leaderboard</h1>")
46
+
47
+ with gr.Tabs():
48
+ with gr.TabItem("πŸ… ACC Model Rankings"):
49
+ leaderboard = init_acc_leaderboard(acc_models_df)
50
+
51
+ with gr.TabItem("πŸš€ Submit a New Model"):
52
+ gr.Markdown("### Submit your ACC Model for Evaluation")
53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  with gr.Row():
55
+ model_name = gr.Textbox(label="Model Name")
56
+ category = gr.Textbox(label="Category (e.g., AGI, Fun, Cybersecurity)")
57
+ description = gr.Textbox(label="Description", lines=3)
58
 
59
+ submit_button = gr.Button("Submit Model")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  submission_result = gr.Markdown()
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
+ def add_model(name, cat, desc):
63
+ if not name or not cat or not desc:
64
+ return "❌ Please fill out all fields."
65
+ global acc_models_df
66
+ new_entry = {"Model": name, "Category": cat, "Description": desc}
67
+ acc_models_df = pd.concat([acc_models_df, pd.DataFrame([new_entry])], ignore_index=True)
68
+ return f"βœ… Model '{name}' added successfully!"
69
+
70
+ submit_button.click(add_model, [model_name, category, description], submission_result)
71
 
72
  scheduler = BackgroundScheduler()
73
+ scheduler.add_job(lambda: None, "interval", seconds=1800) # Placeholder for restarting space if needed
74
  scheduler.start()
75
+
76
+ demo.launch()