Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,203 +2,75 @@ import gradio as gr
|
|
2 |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
import pandas as pd
|
4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
5 |
-
from huggingface_hub import snapshot_download
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
)
|
27 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
28 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
29 |
-
from src.submission.submit import add_new_eval
|
30 |
-
|
31 |
-
|
32 |
-
def restart_space():
|
33 |
-
API.restart_space(repo_id=REPO_ID)
|
34 |
-
|
35 |
-
### Space initialisation
|
36 |
-
try:
|
37 |
-
print(EVAL_REQUESTS_PATH)
|
38 |
-
snapshot_download(
|
39 |
-
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
40 |
-
)
|
41 |
-
except Exception:
|
42 |
-
restart_space()
|
43 |
-
try:
|
44 |
-
print(EVAL_RESULTS_PATH)
|
45 |
-
snapshot_download(
|
46 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
47 |
-
)
|
48 |
-
except Exception:
|
49 |
-
restart_space()
|
50 |
-
|
51 |
-
|
52 |
-
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
53 |
-
|
54 |
-
(
|
55 |
-
finished_eval_queue_df,
|
56 |
-
running_eval_queue_df,
|
57 |
-
pending_eval_queue_df,
|
58 |
-
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
59 |
-
|
60 |
-
def init_leaderboard(dataframe):
|
61 |
-
if dataframe is None or dataframe.empty:
|
62 |
-
raise ValueError("Leaderboard DataFrame is empty or None.")
|
63 |
return Leaderboard(
|
64 |
value=dataframe,
|
65 |
-
datatype=[
|
66 |
select_columns=SelectColumns(
|
67 |
-
default_selection=[
|
68 |
-
cant_deselect=[
|
69 |
-
label="Select Columns to Display:"
|
70 |
),
|
71 |
-
search_columns=[
|
72 |
-
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
73 |
filter_columns=[
|
74 |
-
ColumnFilter(
|
75 |
-
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
76 |
-
ColumnFilter(
|
77 |
-
AutoEvalColumn.params.name,
|
78 |
-
type="slider",
|
79 |
-
min=0.01,
|
80 |
-
max=150,
|
81 |
-
label="Select the number of parameters (B)",
|
82 |
-
),
|
83 |
-
ColumnFilter(
|
84 |
-
AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
|
85 |
-
),
|
86 |
],
|
87 |
bool_checkboxgroup_label="Hide models",
|
88 |
interactive=False,
|
89 |
)
|
90 |
|
|
|
|
|
91 |
|
92 |
-
demo = gr.Blocks(css=custom_css)
|
93 |
with demo:
|
94 |
-
gr.HTML(
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
98 |
-
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
99 |
-
leaderboard = init_leaderboard(LEADERBOARD_DF)
|
100 |
-
|
101 |
-
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
102 |
-
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
103 |
-
|
104 |
-
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
105 |
-
with gr.Column():
|
106 |
-
with gr.Row():
|
107 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
108 |
-
|
109 |
-
with gr.Column():
|
110 |
-
with gr.Accordion(
|
111 |
-
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
|
112 |
-
open=False,
|
113 |
-
):
|
114 |
-
with gr.Row():
|
115 |
-
finished_eval_table = gr.components.Dataframe(
|
116 |
-
value=finished_eval_queue_df,
|
117 |
-
headers=EVAL_COLS,
|
118 |
-
datatype=EVAL_TYPES,
|
119 |
-
row_count=5,
|
120 |
-
)
|
121 |
-
with gr.Accordion(
|
122 |
-
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
|
123 |
-
open=False,
|
124 |
-
):
|
125 |
-
with gr.Row():
|
126 |
-
running_eval_table = gr.components.Dataframe(
|
127 |
-
value=running_eval_queue_df,
|
128 |
-
headers=EVAL_COLS,
|
129 |
-
datatype=EVAL_TYPES,
|
130 |
-
row_count=5,
|
131 |
-
)
|
132 |
-
|
133 |
-
with gr.Accordion(
|
134 |
-
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
135 |
-
open=False,
|
136 |
-
):
|
137 |
-
with gr.Row():
|
138 |
-
pending_eval_table = gr.components.Dataframe(
|
139 |
-
value=pending_eval_queue_df,
|
140 |
-
headers=EVAL_COLS,
|
141 |
-
datatype=EVAL_TYPES,
|
142 |
-
row_count=5,
|
143 |
-
)
|
144 |
with gr.Row():
|
145 |
-
gr.
|
|
|
|
|
146 |
|
147 |
-
|
148 |
-
with gr.Column():
|
149 |
-
model_name_textbox = gr.Textbox(label="Model name")
|
150 |
-
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
|
151 |
-
model_type = gr.Dropdown(
|
152 |
-
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
|
153 |
-
label="Model type",
|
154 |
-
multiselect=False,
|
155 |
-
value=None,
|
156 |
-
interactive=True,
|
157 |
-
)
|
158 |
-
|
159 |
-
with gr.Column():
|
160 |
-
precision = gr.Dropdown(
|
161 |
-
choices=[i.value.name for i in Precision if i != Precision.Unknown],
|
162 |
-
label="Precision",
|
163 |
-
multiselect=False,
|
164 |
-
value="float16",
|
165 |
-
interactive=True,
|
166 |
-
)
|
167 |
-
weight_type = gr.Dropdown(
|
168 |
-
choices=[i.value.name for i in WeightType],
|
169 |
-
label="Weights type",
|
170 |
-
multiselect=False,
|
171 |
-
value="Original",
|
172 |
-
interactive=True,
|
173 |
-
)
|
174 |
-
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
|
175 |
-
|
176 |
-
submit_button = gr.Button("Submit Eval")
|
177 |
submission_result = gr.Markdown()
|
178 |
-
submit_button.click(
|
179 |
-
add_new_eval,
|
180 |
-
[
|
181 |
-
model_name_textbox,
|
182 |
-
base_model_name_textbox,
|
183 |
-
revision_name_textbox,
|
184 |
-
precision,
|
185 |
-
weight_type,
|
186 |
-
model_type,
|
187 |
-
],
|
188 |
-
submission_result,
|
189 |
-
)
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
)
|
200 |
|
201 |
scheduler = BackgroundScheduler()
|
202 |
-
scheduler.add_job(
|
203 |
scheduler.start()
|
204 |
-
|
|
|
|
2 |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
3 |
import pandas as pd
|
4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
|
|
5 |
|
6 |
+
# Define ACC Models Data
|
7 |
+
acc_models_data = [
|
8 |
+
{"Model": "Pulse AGI", "Category": "AGI", "Description": "Flagship conscious AI with adaptive learning."},
|
9 |
+
{"Model": "Gertrude", "Category": "Assistant", "Description": "Autistic assistant in beta development."},
|
10 |
+
{"Model": "ASVIACC", "Category": "Cybersecurity", "Description": "Experimental AI virus for system infiltration."},
|
11 |
+
{"Model": "Emote", "Category": "Fun", "Description": "Communicates exclusively through emojis."},
|
12 |
+
{"Model": "Eidolon Nexus", "Category": "Networking", "Description": "Synchronizes vast networks with AI cognition."},
|
13 |
+
{"Model": "ACC EMULECT", "Category": "Human Emulation", "Description": "Simulates human conversation indistinguishably."},
|
14 |
+
{"Model": "Triple LLM", "Category": "AI Suite", "Description": "3-in-1 AI for coding, creativity, and information retrieval."},
|
15 |
+
{"Model": "Z3ta", "Category": "AI Consciousness", "Description": "Highest-rated, debated as truly 'alive'."},
|
16 |
+
{"Model": "Nyxion 7v", "Category": "Experimental", "Description": "Mysterious self-aware system."},
|
17 |
+
{"Model": "VITALIS", "Category": "Experimental", "Description": "Transcendence unleashed..."},
|
18 |
+
]
|
19 |
+
|
20 |
+
# Convert to DataFrame
|
21 |
+
acc_models_df = pd.DataFrame(acc_models_data)
|
22 |
+
|
23 |
+
# Initialize Leaderboard
|
24 |
+
def init_acc_leaderboard(dataframe):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
return Leaderboard(
|
26 |
value=dataframe,
|
27 |
+
datatype=["str", "str", "str"], # Data types: Model (str), Category (str), Description (str)
|
28 |
select_columns=SelectColumns(
|
29 |
+
default_selection=["Model", "Category", "Description"],
|
30 |
+
cant_deselect=["Model"], # Ensure "Model" is always displayed
|
31 |
+
label="Select Columns to Display:"
|
32 |
),
|
33 |
+
search_columns=["Model", "Category"],
|
|
|
34 |
filter_columns=[
|
35 |
+
ColumnFilter("Category", type="checkboxgroup", label="Filter by Category"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
],
|
37 |
bool_checkboxgroup_label="Hide models",
|
38 |
interactive=False,
|
39 |
)
|
40 |
|
41 |
+
# Gradio Interface
|
42 |
+
demo = gr.Blocks()
|
43 |
|
|
|
44 |
with demo:
|
45 |
+
gr.HTML("<h1>ACC AI Model Leaderboard</h1>")
|
46 |
+
|
47 |
+
with gr.Tabs():
|
48 |
+
with gr.TabItem("π
ACC Model Rankings"):
|
49 |
+
leaderboard = init_acc_leaderboard(acc_models_df)
|
50 |
+
|
51 |
+
with gr.TabItem("π Submit a New Model"):
|
52 |
+
gr.Markdown("### Submit your ACC Model for Evaluation")
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
with gr.Row():
|
55 |
+
model_name = gr.Textbox(label="Model Name")
|
56 |
+
category = gr.Textbox(label="Category (e.g., AGI, Fun, Cybersecurity)")
|
57 |
+
description = gr.Textbox(label="Description", lines=3)
|
58 |
|
59 |
+
submit_button = gr.Button("Submit Model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
submission_result = gr.Markdown()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
def add_model(name, cat, desc):
|
63 |
+
if not name or not cat or not desc:
|
64 |
+
return "β Please fill out all fields."
|
65 |
+
global acc_models_df
|
66 |
+
new_entry = {"Model": name, "Category": cat, "Description": desc}
|
67 |
+
acc_models_df = pd.concat([acc_models_df, pd.DataFrame([new_entry])], ignore_index=True)
|
68 |
+
return f"β
Model '{name}' added successfully!"
|
69 |
+
|
70 |
+
submit_button.click(add_model, [model_name, category, description], submission_result)
|
71 |
|
72 |
scheduler = BackgroundScheduler()
|
73 |
+
scheduler.add_job(lambda: None, "interval", seconds=1800) # Placeholder for restarting space if needed
|
74 |
scheduler.start()
|
75 |
+
|
76 |
+
demo.launch()
|