Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,171 +1,37 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
import torch
|
5 |
-
from diffusers import
|
6 |
-
from
|
7 |
-
import
|
8 |
-
|
9 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
dtype = torch.float16
|
11 |
-
|
12 |
-
# Use the correct repo for SDXL
|
13 |
-
repo = "stabilityai/sdxl-turbo" # This is the correct repo for SDXL
|
14 |
-
|
15 |
-
# Load the model components separately
|
16 |
-
vae = AutoencoderKL.from_pretrained(repo, subfolder="vae", torch_dtype=torch.float16).to(device)
|
17 |
-
text_encoder = SD3Transformer2DModel.from_pretrained(repo, subfolder="text_encoder", torch_dtype=torch.float16).to(device)
|
18 |
-
unet = UNet2DConditionModel.from_pretrained(repo, subfolder="unet", torch_dtype=torch.float16).to(device)
|
19 |
-
scheduler = EulerDiscreteScheduler.from_pretrained(repo, subfolder="scheduler", torch_dtype=torch.float16)
|
20 |
-
|
21 |
-
# Construct the pipeline (this is how you work with SDXL)
|
22 |
-
pipe = StableDiffusionPipeline(
|
23 |
-
vae=vae,
|
24 |
-
text_encoder=text_encoder,
|
25 |
-
unet=unet,
|
26 |
-
scheduler=scheduler
|
27 |
-
).to(device)
|
28 |
-
|
29 |
-
MAX_SEED = np.iinfo(np.int32).max
|
30 |
-
MAX_IMAGE_SIZE = 1344
|
31 |
-
|
32 |
-
def infer(prompts, negative_prompts, seeds, randomize_seeds, widths, heights, guidance_scales, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
33 |
-
images = []
|
34 |
-
for i, prompt in enumerate(prompts):
|
35 |
-
if randomize_seeds[i]:
|
36 |
-
seeds[i] = random.randint(0, MAX_SEED)
|
37 |
-
|
38 |
-
generator = torch.Generator().manual_seed(seeds[i])
|
39 |
-
|
40 |
-
# SDXL requires a slightly different call format:
|
41 |
-
image = pipe(
|
42 |
-
prompt=prompt,
|
43 |
-
negative_prompt=negative_prompts[i],
|
44 |
-
guidance_scale=guidance_scales[i],
|
45 |
-
num_inference_steps=num_inference_steps[i],
|
46 |
-
width=widths[i],
|
47 |
-
height=heights[i],
|
48 |
-
generator=generator
|
49 |
-
).images[0]
|
50 |
-
|
51 |
-
images.append(image)
|
52 |
-
|
53 |
-
return images, seeds
|
54 |
-
|
55 |
-
examples = [
|
56 |
-
["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A blurry astronaut", 0, True, 512, 512, 7.5, 28],
|
57 |
-
["An astronaut riding a green horse", "Astronaut on a regular horse", 0, True, 512, 512, 7.5, 28],
|
58 |
-
["A delicious ceviche cheesecake slice", "A cheesecake that looks boring", 0, True, 512, 512, 7.5, 28],
|
59 |
-
]
|
60 |
-
|
61 |
-
css="""
|
62 |
-
#col-container {
|
63 |
-
margin: 0 auto;
|
64 |
-
max-width: 580px;
|
65 |
-
}
|
66 |
-
"""
|
67 |
-
|
68 |
-
with gr.Blocks(css=css) as demo:
|
69 |
-
|
70 |
-
with gr.Column(elem_id="col-container"):
|
71 |
-
gr.Markdown(f"""
|
72 |
-
# Demo [Automated Stable Diffusion XL](https://huggingface.co/stabilityai/stablediffusion-xl)
|
73 |
-
""")
|
74 |
-
|
75 |
-
with gr.Row():
|
76 |
-
prompt_group = gr.Group(elem_id="prompt_group")
|
77 |
-
with prompt_group:
|
78 |
-
prompt_input = gr.Text(
|
79 |
-
label="Prompt",
|
80 |
-
show_label=False,
|
81 |
-
max_lines=1,
|
82 |
-
placeholder="Enter your prompt",
|
83 |
-
container=False,
|
84 |
-
)
|
85 |
-
negative_prompt_input = gr.Text(
|
86 |
-
label="Negative prompt",
|
87 |
-
max_lines=1,
|
88 |
-
placeholder="Enter a negative prompt",
|
89 |
-
)
|
90 |
-
seed_input = gr.Slider(
|
91 |
-
label="Seed",
|
92 |
-
minimum=0,
|
93 |
-
maximum=MAX_SEED,
|
94 |
-
step=1,
|
95 |
-
value=0,
|
96 |
-
)
|
97 |
-
randomize_seed_input = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
-
width_input = gr.Slider(
|
99 |
-
label="Width",
|
100 |
-
minimum=256,
|
101 |
-
maximum=MAX_IMAGE_SIZE,
|
102 |
-
step=64,
|
103 |
-
value=512,
|
104 |
-
)
|
105 |
-
height_input = gr.Slider(
|
106 |
-
label="Height",
|
107 |
-
minimum=256,
|
108 |
-
maximum=MAX_IMAGE_SIZE,
|
109 |
-
step=64,
|
110 |
-
value=512,
|
111 |
-
)
|
112 |
-
guidance_scale_input = gr.Slider(
|
113 |
-
label="Guidance scale",
|
114 |
-
minimum=0.0,
|
115 |
-
maximum=10.0,
|
116 |
-
step=0.1,
|
117 |
-
value=7.5,
|
118 |
-
)
|
119 |
-
num_inference_steps_input = gr.Slider(
|
120 |
-
label="Number of inference steps",
|
121 |
-
minimum=1,
|
122 |
-
maximum=50,
|
123 |
-
step=1,
|
124 |
-
value=28,
|
125 |
-
)
|
126 |
-
run_button = gr.Button("Run", scale=0)
|
127 |
-
|
128 |
-
result = gr.Gallery(label="Results", show_label=False, columns=4, rows=1)
|
129 |
-
add_button = gr.Button("Add Prompt")
|
130 |
-
|
131 |
-
with gr.Accordion("Advanced Settings", open=False):
|
132 |
-
pass
|
133 |
-
|
134 |
-
gr.Examples(
|
135 |
-
examples = examples,
|
136 |
-
inputs = [
|
137 |
-
prompt_input,
|
138 |
-
negative_prompt_input,
|
139 |
-
seed_input,
|
140 |
-
randomize_seed_input,
|
141 |
-
width_input,
|
142 |
-
height_input,
|
143 |
-
guidance_scale_input,
|
144 |
-
num_inference_steps_input
|
145 |
-
]
|
146 |
-
)
|
147 |
-
|
148 |
-
def add_prompt():
|
149 |
-
prompt_group.duplicate()
|
150 |
-
|
151 |
-
def clear_prompts():
|
152 |
-
prompt_group.clear()
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
+
from safetensors.torch import load_file
|
5 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
8 |
+
repo = "ByteDance/SDXL-Lightning"
|
9 |
+
ckpt = "sdxl_lightning_4step_unet.safetensors"
|
10 |
+
|
11 |
+
# Load model.
|
12 |
+
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cpu")
|
13 |
+
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cpu"))
|
14 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float32, variant="fp32").to("cpu")
|
15 |
+
|
16 |
+
# Ensure sampler uses "trailing" timesteps.
|
17 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
18 |
+
|
19 |
+
def generate_images(prompt, num_inference_steps, guidance_scale, batch_size):
|
20 |
+
images = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, batch_size=batch_size).images
|
21 |
+
return images
|
22 |
+
|
23 |
+
# Define Gradio interface
|
24 |
+
iface = gr.Interface(
|
25 |
+
fn=generate_images,
|
26 |
+
inputs=[
|
27 |
+
gr.Textbox(label="Prompt"),
|
28 |
+
gr.Slider(label="Num Inference Steps", minimum=1, maximum=50, step=1, value=4),
|
29 |
+
gr.Slider(label="Guidance Scale", minimum=0, maximum=20, step=0.1, value=0),
|
30 |
+
gr.Slider(label="Batch Size", minimum=1, maximum=8, step=1, value=2),
|
31 |
+
],
|
32 |
+
outputs=gr.Gallery(label="Generated Images"),
|
33 |
+
title="SDXL Lightning 4-Step Inference (CPU)",
|
34 |
+
description="Generate images with Stable Diffusion XL Lightning 4-Step model on CPU.",
|
35 |
+
)
|
36 |
+
|
37 |
+
iface.launch()
|