Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,14 +2,29 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
import torch
|
5 |
-
from diffusers import
|
|
|
6 |
import spaces
|
7 |
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
dtype = torch.float16
|
10 |
|
11 |
-
repo
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
MAX_IMAGE_SIZE = 1344
|
@@ -22,6 +37,7 @@ def infer(prompts, negative_prompts, seeds, randomize_seeds, widths, heights, gu
|
|
22 |
|
23 |
generator = torch.Generator().manual_seed(seeds[i])
|
24 |
|
|
|
25 |
image = pipe(
|
26 |
prompt=prompt,
|
27 |
negative_prompt=negative_prompts[i],
|
@@ -53,7 +69,7 @@ with gr.Blocks(css=css) as demo:
|
|
53 |
|
54 |
with gr.Column(elem_id="col-container"):
|
55 |
gr.Markdown(f"""
|
56 |
-
# Demo [Automated Stable Diffusion
|
57 |
""")
|
58 |
|
59 |
with gr.Row():
|
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
import torch
|
5 |
+
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler, AutoencoderKL, UNet2DConditionModel
|
6 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
7 |
import spaces
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
dtype = torch.float16
|
11 |
|
12 |
+
# Use the correct repo for SDXL
|
13 |
+
repo = "stabilityai/sdxl-turbo" # This is the correct repo for SDXL
|
14 |
+
|
15 |
+
# Load the model components separately
|
16 |
+
vae = AutoencoderKL.from_pretrained(repo, subfolder="vae", torch_dtype=torch.float16).to(device)
|
17 |
+
text_encoder = SD3Transformer2DModel.from_pretrained(repo, subfolder="text_encoder", torch_dtype=torch.float16).to(device)
|
18 |
+
unet = UNet2DConditionModel.from_pretrained(repo, subfolder="unet", torch_dtype=torch.float16).to(device)
|
19 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(repo, subfolder="scheduler", torch_dtype=torch.float16)
|
20 |
+
|
21 |
+
# Construct the pipeline (this is how you work with SDXL)
|
22 |
+
pipe = StableDiffusionPipeline(
|
23 |
+
vae=vae,
|
24 |
+
text_encoder=text_encoder,
|
25 |
+
unet=unet,
|
26 |
+
scheduler=scheduler
|
27 |
+
).to(device)
|
28 |
|
29 |
MAX_SEED = np.iinfo(np.int32).max
|
30 |
MAX_IMAGE_SIZE = 1344
|
|
|
37 |
|
38 |
generator = torch.Generator().manual_seed(seeds[i])
|
39 |
|
40 |
+
# SDXL requires a slightly different call format:
|
41 |
image = pipe(
|
42 |
prompt=prompt,
|
43 |
negative_prompt=negative_prompts[i],
|
|
|
69 |
|
70 |
with gr.Column(elem_id="col-container"):
|
71 |
gr.Markdown(f"""
|
72 |
+
# Demo [Automated Stable Diffusion XL](https://huggingface.co/stabilityai/stablediffusion-xl)
|
73 |
""")
|
74 |
|
75 |
with gr.Row():
|