Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler, AutoencoderKL, UNet2DConditionModel | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
import spaces | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.float16 | |
# Use the correct repo for SDXL | |
repo = "stabilityai/sdxl-turbo" # This is the correct repo for SDXL | |
# Load the model components separately | |
vae = AutoencoderKL.from_pretrained(repo, subfolder="vae", torch_dtype=torch.float16).to(device) | |
text_encoder = SD3Transformer2DModel.from_pretrained(repo, subfolder="text_encoder", torch_dtype=torch.float16).to(device) | |
unet = UNet2DConditionModel.from_pretrained(repo, subfolder="unet", torch_dtype=torch.float16).to(device) | |
scheduler = EulerDiscreteScheduler.from_pretrained(repo, subfolder="scheduler", torch_dtype=torch.float16) | |
# Construct the pipeline (this is how you work with SDXL) | |
pipe = StableDiffusionPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
unet=unet, | |
scheduler=scheduler | |
).to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1344 | |
def infer(prompts, negative_prompts, seeds, randomize_seeds, widths, heights, guidance_scales, num_inference_steps, progress=gr.Progress(track_tqdm=True)): | |
images = [] | |
for i, prompt in enumerate(prompts): | |
if randomize_seeds[i]: | |
seeds[i] = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seeds[i]) | |
# SDXL requires a slightly different call format: | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompts[i], | |
guidance_scale=guidance_scales[i], | |
num_inference_steps=num_inference_steps[i], | |
width=widths[i], | |
height=heights[i], | |
generator=generator | |
).images[0] | |
images.append(image) | |
return images, seeds | |
examples = [ | |
["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A blurry astronaut", 0, True, 512, 512, 7.5, 28], | |
["An astronaut riding a green horse", "Astronaut on a regular horse", 0, True, 512, 512, 7.5, 28], | |
["A delicious ceviche cheesecake slice", "A cheesecake that looks boring", 0, True, 512, 512, 7.5, 28], | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 580px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# Demo [Automated Stable Diffusion XL](https://huggingface.co/stabilityai/stablediffusion-xl) | |
""") | |
with gr.Row(): | |
prompt_group = gr.Group(elem_id="prompt_group") | |
with prompt_group: | |
prompt_input = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
negative_prompt_input = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
) | |
seed_input = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed_input = gr.Checkbox(label="Randomize seed", value=True) | |
width_input = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=64, | |
value=512, | |
) | |
height_input = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=64, | |
value=512, | |
) | |
guidance_scale_input = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=7.5, | |
) | |
num_inference_steps_input = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Gallery(label="Results", show_label=False, columns=4, rows=1) | |
add_button = gr.Button("Add Prompt") | |
with gr.Accordion("Advanced Settings", open=False): | |
pass | |
gr.Examples( | |
examples = examples, | |
inputs = [ | |
prompt_input, | |
negative_prompt_input, | |
seed_input, | |
randomize_seed_input, | |
width_input, | |
height_input, | |
guidance_scale_input, | |
num_inference_steps_input | |
] | |
) | |
def add_prompt(): | |
prompt_group.duplicate() | |
def clear_prompts(): | |
prompt_group.clear() | |
add_button.click(add_prompt) | |
gr.on( | |
triggers=[run_button.click, prompt_input.submit, negative_prompt_input.submit], | |
fn=infer, | |
inputs=[ | |
prompt_input, | |
negative_prompt_input, | |
seed_input, | |
randomize_seed_input, | |
width_input, | |
height_input, | |
guidance_scale_input, | |
num_inference_steps_input | |
], | |
outputs=[result, seed_input], | |
api_name="infer" | |
) | |
demo.launch() |