TruEraMultiMed / app.py
Tonic's picture
Update app.py
ed0aa7b
raw
history blame
2.71 kB
import gradio as gr
import requests
import json
from decouple import Config
config = Config('.env')
def query_vectara(question):
# Get the user's message from the chat history
user_message = question
# Query Vectara API
customer_id = config('CUSTOMER_ID') # Read from .env file
corpus_id = config('CORPUS_ID') # Read from .env file
api_key = config('API_KEY') # Read from .env file
query_url = "https://api.vectara.io/v1/query/v1/query"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}",
"customer-id": customer_id,
}
query_body = {
"query": [
{
"query": user_message,
"queryContext": "",
"start": 0,
"numResults": 10,
"contextConfig": {
"charsBefore": 0,
"charsAfter": 0,
"sentencesBefore": 2,
"sentencesAfter": 2,
"startTag": "%START_SNIPPET%",
"endTag": "%END_SNIPPET%",
},
"rerankingConfig": {
"rerankerId": 272725718,
"mmrConfig": {
"diversityBias": 0.3
}
},
"corpusKey": [
{
"customerId": customer_id,
"corpusId": corpus_id,
"semantics": 0,
"metadataFilter": "",
"lexicalInterpolationConfig": {
"lambda": 0
},
"dim": []
}
],
"summary": [
{
"maxSummarizedResults": 5,
"responseLang": "eng",
"summarizerPromptName": "vectara-summary-ext-v1.2.0"
}
]
}
]
}
query_response = requests.post(query_url, json=query_body, headers=headers)
if query_response.status_code == 200:
query_data = query_response.json()
response_message = f"Response from Vectara API: {json.dumps(query_data, indent=2)}"
else:
response_message = f"Error: {query_response.status_code}"
return response_message
# Create a Gradio ChatInterface with only a text input
iface = gr.Interface(
fn=query_vectara,
inputs=[gr.Textbox(label="Input Text")],
outputs=gr.Textbox(label="Output Text"),
title="Vectara Chatbot",
description="Ask me anything using the Vectara API!"
)
iface.launch()