Spaces:
Runtime error
Runtime error
File size: 2,713 Bytes
39dff4c 99914ec 4a0366f c352f02 a147fbd ed0aa7b 4a0366f 24ed9e0 c6ddc86 bb31795 fd6e173 bb31795 4a0366f bb31795 4a0366f bb31795 4a0366f af86876 bb31795 af86876 c6ddc86 bb31795 39dff4c bb31795 fd6e173 bb31795 fd6e173 9dd7ad1 bb31795 ea7a2b9 fd6e173 ca860d3 39dff4c fd6e173 da239a9 7afe812 9ed9d81 af86876 cf7f506 bb31795 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import gradio as gr
import requests
import json
from decouple import Config
config = Config('.env')
def query_vectara(question):
# Get the user's message from the chat history
user_message = question
# Query Vectara API
customer_id = config('CUSTOMER_ID') # Read from .env file
corpus_id = config('CORPUS_ID') # Read from .env file
api_key = config('API_KEY') # Read from .env file
query_url = "https://api.vectara.io/v1/query/v1/query"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}",
"customer-id": customer_id,
}
query_body = {
"query": [
{
"query": user_message,
"queryContext": "",
"start": 0,
"numResults": 10,
"contextConfig": {
"charsBefore": 0,
"charsAfter": 0,
"sentencesBefore": 2,
"sentencesAfter": 2,
"startTag": "%START_SNIPPET%",
"endTag": "%END_SNIPPET%",
},
"rerankingConfig": {
"rerankerId": 272725718,
"mmrConfig": {
"diversityBias": 0.3
}
},
"corpusKey": [
{
"customerId": customer_id,
"corpusId": corpus_id,
"semantics": 0,
"metadataFilter": "",
"lexicalInterpolationConfig": {
"lambda": 0
},
"dim": []
}
],
"summary": [
{
"maxSummarizedResults": 5,
"responseLang": "eng",
"summarizerPromptName": "vectara-summary-ext-v1.2.0"
}
]
}
]
}
query_response = requests.post(query_url, json=query_body, headers=headers)
if query_response.status_code == 200:
query_data = query_response.json()
response_message = f"Response from Vectara API: {json.dumps(query_data, indent=2)}"
else:
response_message = f"Error: {query_response.status_code}"
return response_message
# Create a Gradio ChatInterface with only a text input
iface = gr.Interface(
fn=query_vectara,
inputs=[gr.Textbox(label="Input Text")],
outputs=gr.Textbox(label="Output Text"),
title="Vectara Chatbot",
description="Ask me anything using the Vectara API!"
)
iface.launch()
|