HRM / pretrain.py
imone's picture
Update
171e2fc
raw
history blame
15.6 kB
from typing import Optional, Any, Sequence, List
from dataclasses import dataclass
import os
import math
import yaml
import shutil
import torch
import torch.distributed as dist
from torch import nn
from torch.utils.data import DataLoader
import tqdm
import wandb
import coolname
import hydra
import pydantic
from omegaconf import DictConfig
from adam_atan2 import AdamATan2
from puzzle_dataset import PuzzleDataset, PuzzleDatasetConfig, PuzzleDatasetMetadata
from utils.functions import load_model_class, get_model_source_path
from models.sparse_embedding import CastedSparseEmbeddingSignSGD_Distributed
class LossConfig(pydantic.BaseModel):
model_config = pydantic.ConfigDict(extra='allow')
name: str
class ArchConfig(pydantic.BaseModel):
model_config = pydantic.ConfigDict(extra='allow')
name: str
loss: LossConfig
class PretrainConfig(pydantic.BaseModel):
# Config
arch: ArchConfig
# Data
data_path: str
# Hyperparams
global_batch_size: int
epochs: int
lr: float
lr_min_ratio: float
lr_warmup_steps: int
weight_decay: float
beta1: float
beta2: float
# Puzzle embedding
puzzle_emb_lr: float
puzzle_emb_weight_decay: float
# Names
project_name: Optional[str] = None
run_name: Optional[str] = None
checkpoint_path: Optional[str] = None
# Extras
seed: int = 0
checkpoint_every_eval: bool = False
eval_interval: Optional[int] = None
eval_save_outputs: List[str] = []
@dataclass
class TrainState:
model: nn.Module
optimizers: Sequence[torch.optim.Optimizer]
optimizer_lrs: Sequence[float]
carry: Any
step: int
total_steps: int
def create_dataloader(config: PretrainConfig, split: str, rank: int, world_size: int, **kwargs):
dataset = PuzzleDataset(PuzzleDatasetConfig(
seed=config.seed,
dataset_path=config.data_path,
rank=rank,
num_replicas=world_size,
**kwargs
), split=split)
dataloader = DataLoader(
dataset,
batch_size=None,
num_workers=1,
prefetch_factor=8,
pin_memory=True,
persistent_workers=True
)
return dataloader, dataset.metadata
def create_model(config: PretrainConfig, train_metadata: PuzzleDatasetMetadata, world_size: int):
model_cfg = dict(
**config.arch.__pydantic_extra__, # type: ignore
batch_size=config.global_batch_size // world_size,
vocab_size=train_metadata.vocab_size,
seq_len=train_metadata.seq_len,
num_puzzle_identifiers=train_metadata.num_puzzle_identifiers,
causal=False # Non-autoregressive
)
# Instantiate model with loss head
model_cls = load_model_class(config.arch.name)
loss_head_cls = load_model_class(config.arch.loss.name)
with torch.device("cuda"):
model: nn.Module = model_cls(model_cfg)
model = loss_head_cls(model, **config.arch.loss.__pydantic_extra__) # type: ignore
if "DISABLE_COMPILE" not in os.environ:
model = torch.compile(model, dynamic=False) # type: ignore
# Broadcast parameters from rank 0
if world_size > 1:
with torch.no_grad():
for param in list(model.parameters()) + list(model.buffers()):
dist.broadcast(param, src=0)
# Optimizers and lr
optimizers = [
CastedSparseEmbeddingSignSGD_Distributed(
model.model.puzzle_emb.buffers(), # type: ignore
lr=0, # Needs to be set by scheduler
weight_decay=config.puzzle_emb_weight_decay,
world_size=world_size
),
AdamATan2(
model.parameters(),
lr=0, # Needs to be set by scheduler
weight_decay=config.weight_decay,
betas=(config.beta1, config.beta2)
)
]
optimizer_lrs = [
config.puzzle_emb_lr,
config.lr
]
return model, optimizers, optimizer_lrs
def cosine_schedule_with_warmup_lr_lambda(
current_step: int, *, base_lr: float, num_warmup_steps: int, num_training_steps: int, min_ratio: float = 0.0, num_cycles: float = 0.5
):
if current_step < num_warmup_steps:
return base_lr * float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
return base_lr * (min_ratio + max(0.0, (1 - min_ratio) * 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))))
def init_train_state(config: PretrainConfig, train_metadata: PuzzleDatasetMetadata, world_size: int):
# Estimated total training steps
total_steps = int(config.epochs * train_metadata.total_groups * train_metadata.mean_puzzle_examples / config.global_batch_size)
# Model
model, optimizers, optimizer_lrs = create_model(config, train_metadata, world_size=world_size)
return TrainState(
step=0,
total_steps=total_steps,
model=model,
optimizers=optimizers,
optimizer_lrs=optimizer_lrs,
carry=None
)
def save_train_state(config: PretrainConfig, train_state: TrainState):
# FIXME: Only saved model.
if config.checkpoint_path is None:
return
os.makedirs(config.checkpoint_path, exist_ok=True)
torch.save(train_state.model.state_dict(), os.path.join(config.checkpoint_path, f"step_{train_state.step}"))
def compute_lr(base_lr: float, config: PretrainConfig, train_state: TrainState):
return cosine_schedule_with_warmup_lr_lambda(
current_step=train_state.step,
base_lr=base_lr,
num_warmup_steps=round(config.lr_warmup_steps),
num_training_steps=train_state.total_steps,
min_ratio=config.lr_min_ratio
)
def train_batch(config: PretrainConfig, train_state: TrainState, batch: Any, global_batch_size: int, rank: int, world_size: int):
train_state.step += 1
if train_state.step > train_state.total_steps: # At most train_total_steps
return
# To device
batch = {k: v.cuda() for k, v in batch.items()}
# Init carry if it is None
if train_state.carry is None:
with torch.device("cuda"):
train_state.carry = train_state.model.initial_carry(batch) # type: ignore
# Forward
train_state.carry, loss, metrics, _, _ = train_state.model(carry=train_state.carry, batch=batch, return_keys=[])
((1 / global_batch_size) * loss).backward()
# Allreduce
if world_size > 1:
for param in train_state.model.parameters():
if param.grad is not None:
dist.all_reduce(param.grad)
# Apply optimizer
lr_this_step = None
for optim, base_lr in zip(train_state.optimizers, train_state.optimizer_lrs):
lr_this_step = compute_lr(base_lr, config, train_state)
for param_group in optim.param_groups:
param_group['lr'] = lr_this_step
optim.step()
optim.zero_grad()
# Reduce metrics
if len(metrics):
assert not any(v.requires_grad for v in metrics.values())
metric_keys = list(sorted(metrics.keys())) # Sort keys to guarantee all processes use the same order.
# Reduce and reconstruct
metric_values = torch.stack([metrics[k] for k in metric_keys])
if world_size > 1:
dist.reduce(metric_values, dst=0)
if rank == 0:
metric_values = metric_values.cpu().numpy()
reduced_metrics = {k: metric_values[i] for i, k in enumerate(metric_keys)}
# Postprocess
count = max(reduced_metrics["count"], 1) # Avoid NaNs
reduced_metrics = {f"train/{k}": v / (global_batch_size if k.endswith("loss") else count) for k, v in reduced_metrics.items()}
reduced_metrics["train/lr"] = lr_this_step
return reduced_metrics
def evaluate(config: PretrainConfig, train_state: TrainState, eval_loader: torch.utils.data.DataLoader, eval_metadata: PuzzleDatasetMetadata, rank: int, world_size: int):
with torch.inference_mode():
set_ids = {k: idx for idx, k in enumerate(eval_metadata.sets)}
all_preds = {}
metric_keys = []
metric_values = None
metric_global_batch_size = [0 for _ in range(len(set_ids))]
carry = None
for set_name, batch, global_batch_size in eval_loader:
# To device
batch = {k: v.cuda() for k, v in batch.items()}
with torch.device("cuda"):
carry = train_state.model.initial_carry(batch) # type: ignore
# Forward
while True:
carry, _, metrics, preds, all_finish = train_state.model(carry=carry, batch=batch, return_keys=config.eval_save_outputs)
if all_finish:
break
for collection in (batch, preds):
for k, v in collection.items():
if k in config.eval_save_outputs:
all_preds.setdefault(k, [])
all_preds[k].append(v.cpu()) # Move to CPU for saving GPU memory
del carry, preds, batch, all_finish
# Aggregate
set_id = set_ids[set_name]
if metric_values is None:
metric_keys = list(sorted(metrics.keys())) # Sort keys to guarantee all processes use the same order.
metric_values = torch.zeros((len(set_ids), len(metrics.values())), dtype=torch.float32, device="cuda")
metric_values[set_id] += torch.stack([metrics[k] for k in metric_keys])
metric_global_batch_size[set_id] += global_batch_size
if len(all_preds) and config.checkpoint_path is not None:
all_preds = {k: torch.cat(v, dim=0) for k, v in all_preds.items()}
os.makedirs(config.checkpoint_path, exist_ok=True)
torch.save(all_preds, os.path.join(config.checkpoint_path, f"step_{train_state.step}_all_preds.{rank}"))
# Logging
# Reduce to rank 0
if metric_values is not None:
if world_size > 1:
dist.reduce(metric_values, dst=0)
if rank == 0:
reduced_metrics = metric_values.cpu().numpy()
reduced_metrics = {set_name: {metric_name: reduced_metrics[set_id, metric_id] for metric_id, metric_name in enumerate(metric_keys)}
for set_id, set_name in enumerate(set_ids)}
# Postprocess
for set_name, metrics in reduced_metrics.items():
count = metrics.pop("count")
reduced_metrics[set_name] = {k: v / count for k, v in metrics.items()}
return reduced_metrics
def save_code_and_config(config: PretrainConfig):
if config.checkpoint_path is None or wandb.run is None:
return
os.makedirs(config.checkpoint_path, exist_ok=True)
# Copy code
code_list = [
get_model_source_path(config.arch.name),
get_model_source_path(config.arch.loss.name)
]
for code_file in code_list:
if code_file is not None:
code_name = os.path.basename(code_file)
shutil.copy(code_file, os.path.join(config.checkpoint_path, code_name))
# Dump config as yaml
config_file = os.path.join(config.checkpoint_path, "all_config.yaml")
with open(config_file, "wt") as f:
yaml.dump(config.model_dump(), f)
# Log code
wandb.run.log_code(config.checkpoint_path)
def load_synced_config(hydra_config: DictConfig, rank: int, world_size: int) -> PretrainConfig:
objects = [None]
if rank == 0:
config = PretrainConfig(**hydra_config) # type: ignore
# Naming
if config.project_name is None:
config.project_name = f"{os.path.basename(config.data_path).capitalize()} ACT-torch"
if config.run_name is None:
config.run_name = f"{config.arch.name.split('@')[-1]} {coolname.generate_slug(2)}"
if config.checkpoint_path is None:
config.checkpoint_path = os.path.join("checkpoints", config.project_name, config.run_name)
objects = [config]
if world_size > 1:
dist.broadcast_object_list(objects, src=0)
return objects[0] # type: ignore
@hydra.main(config_path="config", config_name="cfg_pretrain", version_base=None)
def launch(hydra_config: DictConfig):
RANK = 0
WORLD_SIZE = 1
# Initialize distributed training if in distributed environment (e.g. torchrun)
if "LOCAL_RANK" in os.environ:
# Initialize distributed, default device and dtype
dist.init_process_group(backend="nccl")
RANK = dist.get_rank()
WORLD_SIZE = dist.get_world_size()
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
# Load sync'ed config
config = load_synced_config(hydra_config, rank=RANK, world_size=WORLD_SIZE)
# Seed RNGs to ensure consistency
torch.random.manual_seed(config.seed + RANK)
# Dataset
train_epochs_per_iter = config.eval_interval if config.eval_interval is not None else config.epochs
total_iters = config.epochs // train_epochs_per_iter
assert config.epochs % train_epochs_per_iter == 0, "Eval interval must be a divisor of total epochs."
train_loader, train_metadata = create_dataloader(config, "train", test_set_mode=False, epochs_per_iter=train_epochs_per_iter, global_batch_size=config.global_batch_size, rank=RANK, world_size=WORLD_SIZE)
eval_loader, eval_metadata = create_dataloader(config, "test", test_set_mode=True, epochs_per_iter=1, global_batch_size=config.global_batch_size, rank=RANK, world_size=WORLD_SIZE)
# Train state
train_state = init_train_state(config, train_metadata, world_size=WORLD_SIZE)
# Progress bar and logger
progress_bar = None
if RANK == 0:
progress_bar = tqdm.tqdm(total=train_state.total_steps)
wandb.init(project=config.project_name, name=config.run_name, config=config.model_dump(), settings=wandb.Settings(_disable_stats=True)) # type: ignore
wandb.log({"num_params": sum(x.numel() for x in train_state.model.parameters())}, step=0)
save_code_and_config(config)
# Training Loop
for _iter_id in range(total_iters):
print (f"[Rank {RANK}, World Size {WORLD_SIZE}]: Epoch {_iter_id * train_epochs_per_iter}")
############ Train Iter
train_state.model.train()
for set_name, batch, global_batch_size in train_loader:
metrics = train_batch(config, train_state, batch, global_batch_size, rank=RANK, world_size=WORLD_SIZE)
if RANK == 0 and metrics is not None:
wandb.log(metrics, step=train_state.step)
progress_bar.update(train_state.step - progress_bar.n) # type: ignore
############ Evaluation
train_state.model.eval()
metrics = evaluate(config, train_state, eval_loader, eval_metadata, rank=RANK, world_size=WORLD_SIZE)
if RANK == 0 and metrics is not None:
wandb.log(metrics, step=train_state.step)
############ Checkpointing
if RANK == 0 and (config.checkpoint_every_eval or (_iter_id == total_iters - 1)):
save_train_state(config, train_state)
# finalize
if dist.is_initialized():
dist.destroy_process_group()
wandb.finish()
if __name__ == "__main__":
launch()