File size: 15,607 Bytes
bd62227 171e2fc bd62227 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
from typing import Optional, Any, Sequence, List
from dataclasses import dataclass
import os
import math
import yaml
import shutil
import torch
import torch.distributed as dist
from torch import nn
from torch.utils.data import DataLoader
import tqdm
import wandb
import coolname
import hydra
import pydantic
from omegaconf import DictConfig
from adam_atan2 import AdamATan2
from puzzle_dataset import PuzzleDataset, PuzzleDatasetConfig, PuzzleDatasetMetadata
from utils.functions import load_model_class, get_model_source_path
from models.sparse_embedding import CastedSparseEmbeddingSignSGD_Distributed
class LossConfig(pydantic.BaseModel):
model_config = pydantic.ConfigDict(extra='allow')
name: str
class ArchConfig(pydantic.BaseModel):
model_config = pydantic.ConfigDict(extra='allow')
name: str
loss: LossConfig
class PretrainConfig(pydantic.BaseModel):
# Config
arch: ArchConfig
# Data
data_path: str
# Hyperparams
global_batch_size: int
epochs: int
lr: float
lr_min_ratio: float
lr_warmup_steps: int
weight_decay: float
beta1: float
beta2: float
# Puzzle embedding
puzzle_emb_lr: float
puzzle_emb_weight_decay: float
# Names
project_name: Optional[str] = None
run_name: Optional[str] = None
checkpoint_path: Optional[str] = None
# Extras
seed: int = 0
checkpoint_every_eval: bool = False
eval_interval: Optional[int] = None
eval_save_outputs: List[str] = []
@dataclass
class TrainState:
model: nn.Module
optimizers: Sequence[torch.optim.Optimizer]
optimizer_lrs: Sequence[float]
carry: Any
step: int
total_steps: int
def create_dataloader(config: PretrainConfig, split: str, rank: int, world_size: int, **kwargs):
dataset = PuzzleDataset(PuzzleDatasetConfig(
seed=config.seed,
dataset_path=config.data_path,
rank=rank,
num_replicas=world_size,
**kwargs
), split=split)
dataloader = DataLoader(
dataset,
batch_size=None,
num_workers=1,
prefetch_factor=8,
pin_memory=True,
persistent_workers=True
)
return dataloader, dataset.metadata
def create_model(config: PretrainConfig, train_metadata: PuzzleDatasetMetadata, world_size: int):
model_cfg = dict(
**config.arch.__pydantic_extra__, # type: ignore
batch_size=config.global_batch_size // world_size,
vocab_size=train_metadata.vocab_size,
seq_len=train_metadata.seq_len,
num_puzzle_identifiers=train_metadata.num_puzzle_identifiers,
causal=False # Non-autoregressive
)
# Instantiate model with loss head
model_cls = load_model_class(config.arch.name)
loss_head_cls = load_model_class(config.arch.loss.name)
with torch.device("cuda"):
model: nn.Module = model_cls(model_cfg)
model = loss_head_cls(model, **config.arch.loss.__pydantic_extra__) # type: ignore
if "DISABLE_COMPILE" not in os.environ:
model = torch.compile(model, dynamic=False) # type: ignore
# Broadcast parameters from rank 0
if world_size > 1:
with torch.no_grad():
for param in list(model.parameters()) + list(model.buffers()):
dist.broadcast(param, src=0)
# Optimizers and lr
optimizers = [
CastedSparseEmbeddingSignSGD_Distributed(
model.model.puzzle_emb.buffers(), # type: ignore
lr=0, # Needs to be set by scheduler
weight_decay=config.puzzle_emb_weight_decay,
world_size=world_size
),
AdamATan2(
model.parameters(),
lr=0, # Needs to be set by scheduler
weight_decay=config.weight_decay,
betas=(config.beta1, config.beta2)
)
]
optimizer_lrs = [
config.puzzle_emb_lr,
config.lr
]
return model, optimizers, optimizer_lrs
def cosine_schedule_with_warmup_lr_lambda(
current_step: int, *, base_lr: float, num_warmup_steps: int, num_training_steps: int, min_ratio: float = 0.0, num_cycles: float = 0.5
):
if current_step < num_warmup_steps:
return base_lr * float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
return base_lr * (min_ratio + max(0.0, (1 - min_ratio) * 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))))
def init_train_state(config: PretrainConfig, train_metadata: PuzzleDatasetMetadata, world_size: int):
# Estimated total training steps
total_steps = int(config.epochs * train_metadata.total_groups * train_metadata.mean_puzzle_examples / config.global_batch_size)
# Model
model, optimizers, optimizer_lrs = create_model(config, train_metadata, world_size=world_size)
return TrainState(
step=0,
total_steps=total_steps,
model=model,
optimizers=optimizers,
optimizer_lrs=optimizer_lrs,
carry=None
)
def save_train_state(config: PretrainConfig, train_state: TrainState):
# FIXME: Only saved model.
if config.checkpoint_path is None:
return
os.makedirs(config.checkpoint_path, exist_ok=True)
torch.save(train_state.model.state_dict(), os.path.join(config.checkpoint_path, f"step_{train_state.step}"))
def compute_lr(base_lr: float, config: PretrainConfig, train_state: TrainState):
return cosine_schedule_with_warmup_lr_lambda(
current_step=train_state.step,
base_lr=base_lr,
num_warmup_steps=round(config.lr_warmup_steps),
num_training_steps=train_state.total_steps,
min_ratio=config.lr_min_ratio
)
def train_batch(config: PretrainConfig, train_state: TrainState, batch: Any, global_batch_size: int, rank: int, world_size: int):
train_state.step += 1
if train_state.step > train_state.total_steps: # At most train_total_steps
return
# To device
batch = {k: v.cuda() for k, v in batch.items()}
# Init carry if it is None
if train_state.carry is None:
with torch.device("cuda"):
train_state.carry = train_state.model.initial_carry(batch) # type: ignore
# Forward
train_state.carry, loss, metrics, _, _ = train_state.model(carry=train_state.carry, batch=batch, return_keys=[])
((1 / global_batch_size) * loss).backward()
# Allreduce
if world_size > 1:
for param in train_state.model.parameters():
if param.grad is not None:
dist.all_reduce(param.grad)
# Apply optimizer
lr_this_step = None
for optim, base_lr in zip(train_state.optimizers, train_state.optimizer_lrs):
lr_this_step = compute_lr(base_lr, config, train_state)
for param_group in optim.param_groups:
param_group['lr'] = lr_this_step
optim.step()
optim.zero_grad()
# Reduce metrics
if len(metrics):
assert not any(v.requires_grad for v in metrics.values())
metric_keys = list(sorted(metrics.keys())) # Sort keys to guarantee all processes use the same order.
# Reduce and reconstruct
metric_values = torch.stack([metrics[k] for k in metric_keys])
if world_size > 1:
dist.reduce(metric_values, dst=0)
if rank == 0:
metric_values = metric_values.cpu().numpy()
reduced_metrics = {k: metric_values[i] for i, k in enumerate(metric_keys)}
# Postprocess
count = max(reduced_metrics["count"], 1) # Avoid NaNs
reduced_metrics = {f"train/{k}": v / (global_batch_size if k.endswith("loss") else count) for k, v in reduced_metrics.items()}
reduced_metrics["train/lr"] = lr_this_step
return reduced_metrics
def evaluate(config: PretrainConfig, train_state: TrainState, eval_loader: torch.utils.data.DataLoader, eval_metadata: PuzzleDatasetMetadata, rank: int, world_size: int):
with torch.inference_mode():
set_ids = {k: idx for idx, k in enumerate(eval_metadata.sets)}
all_preds = {}
metric_keys = []
metric_values = None
metric_global_batch_size = [0 for _ in range(len(set_ids))]
carry = None
for set_name, batch, global_batch_size in eval_loader:
# To device
batch = {k: v.cuda() for k, v in batch.items()}
with torch.device("cuda"):
carry = train_state.model.initial_carry(batch) # type: ignore
# Forward
while True:
carry, _, metrics, preds, all_finish = train_state.model(carry=carry, batch=batch, return_keys=config.eval_save_outputs)
if all_finish:
break
for collection in (batch, preds):
for k, v in collection.items():
if k in config.eval_save_outputs:
all_preds.setdefault(k, [])
all_preds[k].append(v.cpu()) # Move to CPU for saving GPU memory
del carry, preds, batch, all_finish
# Aggregate
set_id = set_ids[set_name]
if metric_values is None:
metric_keys = list(sorted(metrics.keys())) # Sort keys to guarantee all processes use the same order.
metric_values = torch.zeros((len(set_ids), len(metrics.values())), dtype=torch.float32, device="cuda")
metric_values[set_id] += torch.stack([metrics[k] for k in metric_keys])
metric_global_batch_size[set_id] += global_batch_size
if len(all_preds) and config.checkpoint_path is not None:
all_preds = {k: torch.cat(v, dim=0) for k, v in all_preds.items()}
os.makedirs(config.checkpoint_path, exist_ok=True)
torch.save(all_preds, os.path.join(config.checkpoint_path, f"step_{train_state.step}_all_preds.{rank}"))
# Logging
# Reduce to rank 0
if metric_values is not None:
if world_size > 1:
dist.reduce(metric_values, dst=0)
if rank == 0:
reduced_metrics = metric_values.cpu().numpy()
reduced_metrics = {set_name: {metric_name: reduced_metrics[set_id, metric_id] for metric_id, metric_name in enumerate(metric_keys)}
for set_id, set_name in enumerate(set_ids)}
# Postprocess
for set_name, metrics in reduced_metrics.items():
count = metrics.pop("count")
reduced_metrics[set_name] = {k: v / count for k, v in metrics.items()}
return reduced_metrics
def save_code_and_config(config: PretrainConfig):
if config.checkpoint_path is None or wandb.run is None:
return
os.makedirs(config.checkpoint_path, exist_ok=True)
# Copy code
code_list = [
get_model_source_path(config.arch.name),
get_model_source_path(config.arch.loss.name)
]
for code_file in code_list:
if code_file is not None:
code_name = os.path.basename(code_file)
shutil.copy(code_file, os.path.join(config.checkpoint_path, code_name))
# Dump config as yaml
config_file = os.path.join(config.checkpoint_path, "all_config.yaml")
with open(config_file, "wt") as f:
yaml.dump(config.model_dump(), f)
# Log code
wandb.run.log_code(config.checkpoint_path)
def load_synced_config(hydra_config: DictConfig, rank: int, world_size: int) -> PretrainConfig:
objects = [None]
if rank == 0:
config = PretrainConfig(**hydra_config) # type: ignore
# Naming
if config.project_name is None:
config.project_name = f"{os.path.basename(config.data_path).capitalize()} ACT-torch"
if config.run_name is None:
config.run_name = f"{config.arch.name.split('@')[-1]} {coolname.generate_slug(2)}"
if config.checkpoint_path is None:
config.checkpoint_path = os.path.join("checkpoints", config.project_name, config.run_name)
objects = [config]
if world_size > 1:
dist.broadcast_object_list(objects, src=0)
return objects[0] # type: ignore
@hydra.main(config_path="config", config_name="cfg_pretrain", version_base=None)
def launch(hydra_config: DictConfig):
RANK = 0
WORLD_SIZE = 1
# Initialize distributed training if in distributed environment (e.g. torchrun)
if "LOCAL_RANK" in os.environ:
# Initialize distributed, default device and dtype
dist.init_process_group(backend="nccl")
RANK = dist.get_rank()
WORLD_SIZE = dist.get_world_size()
torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))
# Load sync'ed config
config = load_synced_config(hydra_config, rank=RANK, world_size=WORLD_SIZE)
# Seed RNGs to ensure consistency
torch.random.manual_seed(config.seed + RANK)
# Dataset
train_epochs_per_iter = config.eval_interval if config.eval_interval is not None else config.epochs
total_iters = config.epochs // train_epochs_per_iter
assert config.epochs % train_epochs_per_iter == 0, "Eval interval must be a divisor of total epochs."
train_loader, train_metadata = create_dataloader(config, "train", test_set_mode=False, epochs_per_iter=train_epochs_per_iter, global_batch_size=config.global_batch_size, rank=RANK, world_size=WORLD_SIZE)
eval_loader, eval_metadata = create_dataloader(config, "test", test_set_mode=True, epochs_per_iter=1, global_batch_size=config.global_batch_size, rank=RANK, world_size=WORLD_SIZE)
# Train state
train_state = init_train_state(config, train_metadata, world_size=WORLD_SIZE)
# Progress bar and logger
progress_bar = None
if RANK == 0:
progress_bar = tqdm.tqdm(total=train_state.total_steps)
wandb.init(project=config.project_name, name=config.run_name, config=config.model_dump(), settings=wandb.Settings(_disable_stats=True)) # type: ignore
wandb.log({"num_params": sum(x.numel() for x in train_state.model.parameters())}, step=0)
save_code_and_config(config)
# Training Loop
for _iter_id in range(total_iters):
print (f"[Rank {RANK}, World Size {WORLD_SIZE}]: Epoch {_iter_id * train_epochs_per_iter}")
############ Train Iter
train_state.model.train()
for set_name, batch, global_batch_size in train_loader:
metrics = train_batch(config, train_state, batch, global_batch_size, rank=RANK, world_size=WORLD_SIZE)
if RANK == 0 and metrics is not None:
wandb.log(metrics, step=train_state.step)
progress_bar.update(train_state.step - progress_bar.n) # type: ignore
############ Evaluation
train_state.model.eval()
metrics = evaluate(config, train_state, eval_loader, eval_metadata, rank=RANK, world_size=WORLD_SIZE)
if RANK == 0 and metrics is not None:
wandb.log(metrics, step=train_state.step)
############ Checkpointing
if RANK == 0 and (config.checkpoint_every_eval or (_iter_id == total_iters - 1)):
save_train_state(config, train_state)
# finalize
if dist.is_initialized():
dist.destroy_process_group()
wandb.finish()
if __name__ == "__main__":
launch()
|