Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,125 +1,81 @@
|
|
|
|
1 |
import os
|
2 |
-
import warnings
|
3 |
from dotenv import load_dotenv
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
from qdrant_search import QdrantSearch
|
8 |
from langchain_groq import ChatGroq
|
9 |
from nomic_embeddings import EmbeddingsModel
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
# Load environment variables from .env file
|
15 |
load_dotenv()
|
16 |
|
17 |
-
|
18 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
19 |
|
20 |
-
# Disable tokenizers parallelism to avoid potential issues
|
21 |
os.environ["TOKENIZERS_PARALLELISM"] = "FALSE"
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
# Initialize global variables
|
36 |
collection_names = ["docs_v1_2", "docs_v2_2", "docs_v3_2"]
|
37 |
limit = 5
|
|
|
|
|
|
|
|
|
|
|
38 |
embeddings=embeddings
|
39 |
)
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
question (str): The user's question.
|
48 |
-
|
49 |
-
|
50 |
-
Returns:
|
51 |
-
Tuple[str, str]: The generated answer and the sources used.
|
52 |
-
"""
|
53 |
-
query = question.strip()
|
54 |
-
if not query:
|
55 |
-
return "❌ **Error:** Query cannot be empty.", "No sources available."
|
56 |
-
|
57 |
-
# Step 1: Retrieve relevant documents from Qdrant
|
58 |
retrieved_docs = search.query_multiple_collections(query, collection_names, limit)
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
68 |
try:
|
69 |
-
answer = llm.invoke(prompt)
|
70 |
except Exception as e:
|
71 |
-
return f"
|
72 |
-
|
73 |
# Prepare sources
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
# Create Gradio Interface
|
106 |
-
interface = gr.Interface(
|
107 |
-
fn=chat_endpoint,
|
108 |
-
inputs=gr.Textbox(
|
109 |
-
lines=2,
|
110 |
-
placeholder="Type your question here...",
|
111 |
-
description="Ask questions about the LangChain Python Library and get answers based on the latest documentation."
|
112 |
-
)
|
113 |
-
|
114 |
-
# If running locally, uncomment the following lines:
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
# if __name__ == "__main__":
|
125 |
-
# interface.launch()
|
|
|
1 |
+
# app.py
|
2 |
import os
|
|
|
3 |
from dotenv import load_dotenv
|
4 |
+
from pydantic import BaseModel
|
|
|
|
|
5 |
from qdrant_search import QdrantSearch
|
6 |
from langchain_groq import ChatGroq
|
7 |
from nomic_embeddings import EmbeddingsModel
|
8 |
+
import gradio as gr
|
9 |
|
|
|
|
|
|
|
|
|
10 |
load_dotenv()
|
11 |
|
12 |
+
import warnings
|
13 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
14 |
|
|
|
15 |
os.environ["TOKENIZERS_PARALLELISM"] = "FALSE"
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# Initialize global variables
|
18 |
collection_names = ["docs_v1_2", "docs_v2_2", "docs_v3_2"]
|
19 |
limit = 5
|
20 |
+
llm = ChatGroq(model="mixtral-8x7b-32768")
|
21 |
+
embeddings = EmbeddingsModel()
|
22 |
+
search = QdrantSearch(
|
23 |
+
qdrant_url=os.environ["QDRANT_CLOUD_URL"],
|
24 |
+
api_key=os.environ["QDRANT_API_KEY"],
|
25 |
embeddings=embeddings
|
26 |
)
|
27 |
|
28 |
+
# Define the query processing function
|
29 |
+
def chat_with_langassist(query: str):
|
30 |
+
if not query.strip():
|
31 |
+
return "Query cannot be empty.", []
|
32 |
+
|
33 |
+
# Retrieve relevant documents from Qdrant
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
retrieved_docs = search.query_multiple_collections(query, collection_names, limit)
|
35 |
+
|
36 |
+
# Prepare the context from retrieved documents
|
37 |
+
context = "\n".join([doc['text'] for doc in retrieved_docs])
|
38 |
+
|
39 |
+
# Construct the prompt with context and question
|
40 |
+
prompt = (
|
41 |
+
"You are LangAssist, a knowledgeable assistant for the LangChain Python Library. "
|
42 |
+
"Given the following context from the documentation, provide a helpful answer to the user's question.\n\n"
|
43 |
+
"Context:\n{context}\n\n"
|
44 |
+
"Question: {question}\n\n"
|
45 |
+
"Answer:"
|
46 |
+
).format(context=context, question=query)
|
47 |
+
|
48 |
+
# Generate an answer using the language model
|
49 |
try:
|
50 |
+
answer = llm.invoke(prompt).content.strip()
|
51 |
except Exception as e:
|
52 |
+
return f"Error: {str(e)}", []
|
53 |
+
|
54 |
# Prepare sources
|
55 |
+
sources = [
|
56 |
+
{
|
57 |
+
"source": doc['source'],
|
58 |
+
"text": doc['text']
|
59 |
+
} for doc in retrieved_docs
|
60 |
+
]
|
61 |
+
|
62 |
+
return answer, sources
|
63 |
+
|
64 |
+
# Define Gradio interface
|
65 |
+
with gr.Blocks() as demo:
|
66 |
+
gr.Markdown("<h1>LangAssist Chat</h1>")
|
67 |
+
chatbot = gr.Chatbot()
|
68 |
+
msg = gr.Textbox()
|
69 |
+
clear = gr.Button("Clear")
|
70 |
+
|
71 |
+
def respond(message, chat_history):
|
72 |
+
answer, sources = chat_with_langassist(message)
|
73 |
+
chat_history.append((message, answer))
|
74 |
+
return chat_history, gr.update(value=''), sources
|
75 |
+
|
76 |
+
msg.submit(respond, [msg, chatbot], [chatbot, msg])
|
77 |
+
clear.click(lambda: None, None, chatbot)
|
78 |
+
|
79 |
+
# Run the Gradio app
|
80 |
+
if __name__ == "__main__":
|
81 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|