Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,88 +1,125 @@
|
|
1 |
-
# app.py
|
2 |
import os
|
|
|
3 |
from dotenv import load_dotenv
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
from qdrant_search import QdrantSearch
|
8 |
from langchain_groq import ChatGroq
|
9 |
from nomic_embeddings import EmbeddingsModel
|
10 |
|
|
|
|
|
|
|
|
|
11 |
load_dotenv()
|
12 |
|
13 |
-
|
14 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
15 |
|
|
|
16 |
os.environ["TOKENIZERS_PARALLELISM"] = "FALSE"
|
17 |
|
18 |
-
# Initialize FastAPI app
|
19 |
-
app = FastAPI()
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
29 |
|
30 |
# Initialize global variables
|
31 |
collection_names = ["docs_v1_2", "docs_v2_2", "docs_v3_2"]
|
32 |
limit = 5
|
33 |
-
llm = ChatGroq(model="mixtral-8x7b-32768")
|
34 |
-
embeddings = EmbeddingsModel()
|
35 |
-
search = QdrantSearch(
|
36 |
-
qdrant_url=os.environ["QDRANT_CLOUD_URL"],
|
37 |
-
api_key=os.environ["QDRANT_API_KEY"],
|
38 |
embeddings=embeddings
|
39 |
)
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
question
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
class AnswerResponse(BaseModel):
|
46 |
-
answer: str
|
47 |
-
sources: list
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
query =
|
53 |
if not query:
|
54 |
-
|
55 |
|
56 |
# Step 1: Retrieve relevant documents from Qdrant
|
57 |
retrieved_docs = search.query_multiple_collections(query, collection_names, limit)
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# Step 2: Prepare the context from retrieved documents
|
60 |
-
context = "\n".join([doc['text'] for doc in retrieved_docs])
|
61 |
-
|
62 |
-
# Step 3: Construct the prompt with context and question
|
63 |
-
prompt = (
|
64 |
-
"You are LangAssist, a knowledgeable assistant for the LangChain Python Library. "
|
65 |
-
"Given the following context from the documentation, provide a helpful answer to the user's question.\n\n"
|
66 |
-
"Context:\n{context}\n\n"
|
67 |
-
"Question: {question}\n\n"
|
68 |
-
"Answer:"
|
69 |
-
).format(context=context, question=query)
|
70 |
-
|
71 |
-
# Step 4: Generate an answer using the language model
|
72 |
try:
|
73 |
answer = llm.invoke(prompt)
|
74 |
except Exception as e:
|
75 |
-
|
76 |
|
77 |
# Prepare sources
|
78 |
-
|
79 |
-
{
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
# Step 5: Return the answer and sources
|
86 |
-
# return AnswerResponse(answer=answer.strip(), sources=sources)
|
87 |
-
return AnswerResponse(answer=answer.content.strip(), sources=sources)
|
88 |
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import warnings
|
3 |
from dotenv import load_dotenv
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
|
7 |
from qdrant_search import QdrantSearch
|
8 |
from langchain_groq import ChatGroq
|
9 |
from nomic_embeddings import EmbeddingsModel
|
10 |
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
# Load environment variables from .env file
|
15 |
load_dotenv()
|
16 |
|
17 |
+
# Suppress FutureWarnings
|
18 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
19 |
|
20 |
+
# Disable tokenizers parallelism to avoid potential issues
|
21 |
os.environ["TOKENIZERS_PARALLELISM"] = "FALSE"
|
22 |
|
|
|
|
|
23 |
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
|
35 |
# Initialize global variables
|
36 |
collection_names = ["docs_v1_2", "docs_v2_2", "docs_v3_2"]
|
37 |
limit = 5
|
|
|
|
|
|
|
|
|
|
|
38 |
embeddings=embeddings
|
39 |
)
|
40 |
|
41 |
+
def chat_endpoint(question: str):
|
42 |
+
"""
|
43 |
+
Handles the chat functionality by processing the user's question,
|
44 |
+
retrieving relevant documents, generating an answer, and returning sources.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
question (str): The user's question.
|
48 |
|
|
|
|
|
|
|
49 |
|
50 |
+
Returns:
|
51 |
+
Tuple[str, str]: The generated answer and the sources used.
|
52 |
+
"""
|
53 |
+
query = question.strip()
|
54 |
if not query:
|
55 |
+
return "❌ **Error:** Query cannot be empty.", "No sources available."
|
56 |
|
57 |
# Step 1: Retrieve relevant documents from Qdrant
|
58 |
retrieved_docs = search.query_multiple_collections(query, collection_names, limit)
|
59 |
|
60 |
+
if not retrieved_docs:
|
61 |
+
return "⚠️ **No relevant documents found** for your query.", "No sources available."
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
# Step 2: Prepare the context from retrieved documents
|
67 |
+
context = "\n\n".join([doc['text'] for doc in retrieved_docs])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
try:
|
69 |
answer = llm.invoke(prompt)
|
70 |
except Exception as e:
|
71 |
+
return f"⚠️ **Error generating answer:** {str(e)}", "No sources available."
|
72 |
|
73 |
# Prepare sources
|
74 |
+
sources_md = "\n\n".join([
|
75 |
+
f"**Source:** {src['source']}\n**Excerpt:** {src['text']}"
|
76 |
+
for src in retrieved_docs
|
77 |
+
])
|
78 |
+
|
79 |
+
return answer.content.strip(), sources_md
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
# Create Gradio Interface
|
106 |
+
interface = gr.Interface(
|
107 |
+
fn=chat_endpoint,
|
108 |
+
inputs=gr.Textbox(
|
109 |
+
lines=2,
|
110 |
+
placeholder="Type your question here...",
|
111 |
+
description="Ask questions about the LangChain Python Library and get answers based on the latest documentation."
|
112 |
+
)
|
113 |
+
|
114 |
+
# If running locally, uncomment the following lines:
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
|
|
|
|
|
|
|
123 |
|
124 |
+
# if __name__ == "__main__":
|
125 |
+
# interface.launch()
|