Spaces:
Sleeping
Sleeping
File size: 3,689 Bytes
6c3cf43 b420fee 38c2418 6c3cf43 38c2418 6c3cf43 38c2418 6c3cf43 38c2418 6c3cf43 38c2418 6c3cf43 38c2418 a285409 38c2418 6c3cf43 38c2418 b420fee 38c2418 6c3cf43 38c2418 6c3cf43 b420fee 38c2418 b420fee bda744e b420fee 24ea44e b420fee a285409 38c2418 6c3cf43 38c2418 b420fee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import gradio as gr
import requests
from bs4 import BeautifulSoup
import pandas as pd
from transformers import pipeline
import plotly.express as px
from datetime import datetime, timedelta
# Sentiment Analysis Model
sentiment_model = pipeline(model="finiteautomata/bertweet-base-sentiment-analysis")
# Function to encode special characters in the search query
def encode_special_characters(text):
encoded_text = ''
special_characters = {'&': '%26', '=': '%3D', '+': '%2B', ' ': '%20'}
for char in text.lower():
encoded_text += special_characters.get(char, char)
return encoded_text
# Function to fetch news articles
def fetch_news(query, num_articles=10):
encoded_query = encode_special_characters(query)
url = f"https://news.google.com/search?q={encoded_query}&hl=en-US&gl=in&ceid=US%3Aen&num={num_articles}"
try:
response = requests.get(url)
response.raise_for_status()
except requests.RequestException as e:
print(f"Error fetching news: {e}")
return pd.DataFrame()
soup = BeautifulSoup(response.text, 'html.parser')
articles = soup.find_all('article')
news_data = []
for article in articles[:num_articles]:
link = article.find('a')['href'].replace("./articles/", "https://news.google.com/articles/")
text_parts = article.get_text(separator='\n').split('\n')
news_data.append({
'Title': text_parts[2] if len(text_parts) > 2 else 'Missing',
'Source': text_parts[0] if len(text_parts) > 0 else 'Missing',
'Time': text_parts[3] if len(text_parts) > 3 else 'Missing',
'Author': text_parts[4].split('By ')[-1] if len(text_parts) > 4 else 'Missing',
'Link': link
})
return pd.DataFrame(news_data)
# Function to perform sentiment analysis
def analyze_sentiment(text):
result = sentiment_model(text)[0]
return result['label'], result['score']
# Main function to process news and perform analysis
def news_and_analysis(query):
# Fetch news
news_df = fetch_news(query)
if news_df.empty:
return "No news articles found.", None
# Perform sentiment analysis
news_df['Sentiment'], news_df['Sentiment_Score'] = zip(*news_df['Title'].apply(analyze_sentiment))
# Create sentiment plot
sentiment_fig = px.bar(
news_df,
x='Time',
y='Sentiment_Score',
color='Sentiment',
color_discrete_map={'positive': 'green', 'neutral': 'gray', 'negative': 'red'},
title='News Sentiment Over Time',
labels={'Time': 'Publication Time', 'Sentiment_Score': 'Sentiment Score'}
)
return news_df, sentiment_fig
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# Financial News Sentiment Analysis
Analyze the sentiment of news articles related to financial topics or companies.
Enter a topic or company name to get started.
"""
)
with gr.Row():
with gr.Column():
topic = gr.Textbox(label="Enter a financial topic or company name", placeholder="e.g., Apple Inc.")
analyze_btn = gr.Button(value="Analyze")
with gr.Column():
gr.Empty()
gr.Empty() # Using Empty objects to maintain spacing
gr.Empty()
news_output = gr.DataFrame(label="News and Sentiment Analysis")
sentiment_plot = gr.Plot(label="Sentiment Analysis")
analyze_btn.click(
news_and_analysis,
inputs=[topic],
outputs=[news_output, sentiment_plot]
)
if __name__ == "__main__":
demo.launch()
|