Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
from bs4 import BeautifulSoup
|
4 |
+
import pandas as pd
|
5 |
+
from transformers import pipeline
|
6 |
+
import yfinance as yf
|
7 |
+
import plotly.graph_objects as go
|
8 |
+
from datetime import datetime, timedelta
|
9 |
+
|
10 |
+
# Sentiment Analysis Model
|
11 |
+
sentiment_model = pipeline(model="finiteautomata/bertweet-base-sentiment-analysis")
|
12 |
+
|
13 |
+
# Function to encode special characters in the search query
|
14 |
+
def encode_special_characters(text):
|
15 |
+
encoded_text = ''
|
16 |
+
special_characters = {'&': '%26', '=': '%3D', '+': '%2B', ' ': '%20'}
|
17 |
+
for char in text.lower():
|
18 |
+
encoded_text += special_characters.get(char, char)
|
19 |
+
return encoded_text
|
20 |
+
|
21 |
+
# Function to fetch news articles
|
22 |
+
def fetch_news(query, num_articles=10):
|
23 |
+
encoded_query = encode_special_characters(query)
|
24 |
+
url = f"https://news.google.com/search?q={encoded_query}&hl=en-US&gl=in&ceid=US%3Aen&num={num_articles}"
|
25 |
+
|
26 |
+
try:
|
27 |
+
response = requests.get(url, verify=False)
|
28 |
+
response.raise_for_status()
|
29 |
+
except requests.RequestException as e:
|
30 |
+
print(f"Error fetching news: {e}")
|
31 |
+
return pd.DataFrame()
|
32 |
+
|
33 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
34 |
+
articles = soup.find_all('article')
|
35 |
+
|
36 |
+
news_data = []
|
37 |
+
for article in articles[:num_articles]:
|
38 |
+
link = article.find('a')['href'].replace("./articles/", "https://news.google.com/articles/")
|
39 |
+
text_parts = article.get_text(separator='\n').split('\n')
|
40 |
+
|
41 |
+
news_data.append({
|
42 |
+
'Title': text_parts[2] if len(text_parts) > 2 else 'Missing',
|
43 |
+
'Source': text_parts[0] if len(text_parts) > 0 else 'Missing',
|
44 |
+
'Time': text_parts[3] if len(text_parts) > 3 else 'Missing',
|
45 |
+
'Author': text_parts[4].split('By ')[-1] if len(text_parts) > 4 else 'Missing',
|
46 |
+
'Link': link
|
47 |
+
})
|
48 |
+
|
49 |
+
return pd.DataFrame(news_data)
|
50 |
+
|
51 |
+
# Function to perform sentiment analysis
|
52 |
+
def analyze_sentiment(text):
|
53 |
+
result = sentiment_model(text)[0]
|
54 |
+
return result['label'], result['score']
|
55 |
+
|
56 |
+
# Function to fetch stock data
|
57 |
+
def fetch_stock_data(symbol, start_date, end_date):
|
58 |
+
stock = yf.Ticker(symbol)
|
59 |
+
data = stock.history(start=start_date, end=end_date)
|
60 |
+
return data
|
61 |
+
|
62 |
+
# Main function to process news and perform analysis
|
63 |
+
def news_and_analysis(query, stock_symbol):
|
64 |
+
# Fetch news
|
65 |
+
news_df = fetch_news(query)
|
66 |
+
|
67 |
+
if news_df.empty:
|
68 |
+
return "No news articles found.", None, None
|
69 |
+
|
70 |
+
# Perform sentiment analysis
|
71 |
+
news_df['Sentiment'], news_df['Sentiment_Score'] = zip(*news_df['Title'].apply(analyze_sentiment))
|
72 |
+
|
73 |
+
# Fetch stock data (last 30 days)
|
74 |
+
end_date = datetime.now()
|
75 |
+
start_date = end_date - timedelta(days=30)
|
76 |
+
stock_data = fetch_stock_data(stock_symbol, start_date, end_date)
|
77 |
+
|
78 |
+
# Create sentiment plot
|
79 |
+
sentiment_fig = go.Figure(data=[go.Bar(
|
80 |
+
x=news_df['Time'],
|
81 |
+
y=news_df['Sentiment_Score'],
|
82 |
+
marker_color=news_df['Sentiment'].map({'positive': 'green', 'neutral': 'gray', 'negative': 'red'})
|
83 |
+
)])
|
84 |
+
sentiment_fig.update_layout(title='News Sentiment Over Time', xaxis_title='Time', yaxis_title='Sentiment Score')
|
85 |
+
|
86 |
+
# Create stock price plot
|
87 |
+
stock_fig = go.Figure(data=[go.Candlestick(
|
88 |
+
x=stock_data.index,
|
89 |
+
open=stock_data['Open'],
|
90 |
+
high=stock_data['High'],
|
91 |
+
low=stock_data['Low'],
|
92 |
+
close=stock_data['Close']
|
93 |
+
)])
|
94 |
+
stock_fig.update_layout(title=f'{stock_symbol} Stock Price', xaxis_title='Date', yaxis_title='Price')
|
95 |
+
|
96 |
+
return news_df, sentiment_fig, stock_fig
|
97 |
+
|
98 |
+
# Gradio interface
|
99 |
+
with gr.Blocks() as demo:
|
100 |
+
gr.Markdown("# Financial News Sentiment Analysis and Market Impact")
|
101 |
+
|
102 |
+
with gr.Row():
|
103 |
+
topic = gr.Textbox(label="Enter a financial topic or company name")
|
104 |
+
stock_symbol = gr.Textbox(label="Enter the stock symbol (e.g., RELIANCE.NS for Reliance Industries)")
|
105 |
+
|
106 |
+
analyze_btn = gr.Button(value="Analyze")
|
107 |
+
|
108 |
+
news_output = gr.DataFrame(label="News and Sentiment Analysis")
|
109 |
+
sentiment_plot = gr.Plot(label="Sentiment Analysis")
|
110 |
+
stock_plot = gr.Plot(label="Stock Price Movement")
|
111 |
+
|
112 |
+
analyze_btn.click(
|
113 |
+
news_and_analysis,
|
114 |
+
inputs=[topic, stock_symbol],
|
115 |
+
outputs=[news_output, sentiment_plot, stock_plot]
|
116 |
+
)
|
117 |
+
|
118 |
+
|
119 |
+
demo.launch()
|