Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 34,570 Bytes
f1a0148 5582677 f1a0148 5259aa6 27c8444 f1a0148 5259aa6 f1a0148 5259aa6 27c8444 f1a0148 5582677 27c8444 f1a0148 5259aa6 27c8444 f1a0148 27c8444 43acb84 27c8444 f1a0148 5259aa6 f1a0148 5259aa6 27c8444 f1a0148 27c8444 f1a0148 27c8444 f1a0148 27c8444 f1a0148 43acb84 f1a0148 27c8444 f1a0148 7359a65 27c8444 7359a65 f1a0148 27c8444 f1a0148 27c8444 f1a0148 27c8444 f1a0148 27c8444 f1a0148 27c8444 f1a0148 67272fb f1a0148 772f43d f1a0148 c597d7e f1a0148 c597d7e 8259023 f1a0148 87c9725 f1a0148 772f43d 46844f7 772f43d 707118d 772f43d 46844f7 772f43d 707118d 772f43d 55b82b7 ff6edf2 55b82b7 c052d0d ff6edf2 55b82b7 d50d3f8 388dd40 885d28a 388dd40 4cce6e7 78ffa14 4cce6e7 ae3838b edebf80 f1a0148 e4f27ba f1a0148 5582677 f1a0148 5582677 f1a0148 5582677 27c8444 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 |
from flask_sqlalchemy import SQLAlchemy
from flask_login import UserMixin
from datetime import datetime, timedelta
import math
from sqlalchemy import func, text
import logging
import hashlib
db = SQLAlchemy()
class User(db.Model, UserMixin):
id = db.Column(db.Integer, primary_key=True)
username = db.Column(db.String(100), unique=True, nullable=False)
hf_id = db.Column(db.String(100), unique=True, nullable=False)
join_date = db.Column(db.DateTime, default=datetime.utcnow)
hf_account_created = db.Column(db.DateTime, nullable=True) # HF account creation date
votes = db.relationship("Vote", backref="user", lazy=True)
show_in_leaderboard = db.Column(db.Boolean, default=True)
def __repr__(self):
return f"<User {self.username}>"
class ModelType:
TTS = "tts"
CONVERSATIONAL = "conversational"
class Model(db.Model):
id = db.Column(db.String(100), primary_key=True)
name = db.Column(db.String(100), nullable=False)
model_type = db.Column(db.String(20), nullable=False) # 'tts' or 'conversational'
# Fix ambiguous foreign keys by specifying which foreign key to use
votes = db.relationship(
"Vote",
primaryjoin="or_(Model.id==Vote.model_chosen, Model.id==Vote.model_rejected)",
viewonly=True,
)
current_elo = db.Column(db.Float, default=1500.0)
win_count = db.Column(db.Integer, default=0)
match_count = db.Column(db.Integer, default=0)
is_open = db.Column(db.Boolean, default=False)
is_active = db.Column(
db.Boolean, default=True
) # Whether the model is active and can be voted on
model_url = db.Column(db.String(255), nullable=True)
@property
def win_rate(self):
if self.match_count == 0:
return 0
return (self.win_count / self.match_count) * 100
def __repr__(self):
return f"<Model {self.name} ({self.model_type})>"
class Vote(db.Model):
id = db.Column(db.Integer, primary_key=True)
user_id = db.Column(db.Integer, db.ForeignKey("user.id"), nullable=True)
text = db.Column(db.String(1000), nullable=False)
vote_date = db.Column(db.DateTime, default=datetime.utcnow)
model_chosen = db.Column(db.String(100), db.ForeignKey("model.id"), nullable=False)
model_rejected = db.Column(
db.String(100), db.ForeignKey("model.id"), nullable=False
)
model_type = db.Column(db.String(20), nullable=False) # 'tts' or 'conversational'
# New analytics columns - added with temporary checks for migration
session_duration_seconds = db.Column(db.Float, nullable=True) # Time from generation to vote
ip_address_partial = db.Column(db.String(20), nullable=True) # IP with last digits removed
user_agent = db.Column(db.String(500), nullable=True) # Browser/device info
generation_date = db.Column(db.DateTime, nullable=True) # When audio was generated
cache_hit = db.Column(db.Boolean, nullable=True) # Whether generation was from cache
# Sentence origin tracking
sentence_hash = db.Column(db.String(64), nullable=True, index=True) # SHA-256 hash of the sentence
sentence_origin = db.Column(db.String(20), nullable=True) # 'dataset', 'custom', 'unknown'
counts_for_public_leaderboard = db.Column(db.Boolean, default=True) # Whether this vote counts for public leaderboard
chosen = db.relationship(
"Model",
foreign_keys=[model_chosen],
backref=db.backref("chosen_votes", lazy=True),
)
rejected = db.relationship(
"Model",
foreign_keys=[model_rejected],
backref=db.backref("rejected_votes", lazy=True),
)
def __repr__(self):
return f"<Vote {self.id}: {self.model_chosen} over {self.model_rejected} ({self.model_type})>"
class EloHistory(db.Model):
id = db.Column(db.Integer, primary_key=True)
model_id = db.Column(db.String(100), db.ForeignKey("model.id"), nullable=False)
timestamp = db.Column(db.DateTime, default=datetime.utcnow)
elo_score = db.Column(db.Float, nullable=False)
vote_id = db.Column(db.Integer, db.ForeignKey("vote.id"), nullable=True)
model_type = db.Column(db.String(20), nullable=False) # 'tts' or 'conversational'
model = db.relationship("Model", backref=db.backref("elo_history", lazy=True))
vote = db.relationship("Vote", backref=db.backref("elo_changes", lazy=True))
def __repr__(self):
return f"<EloHistory {self.model_id}: {self.elo_score} at {self.timestamp} ({self.model_type})>"
class CoordinatedVotingCampaign(db.Model):
"""Log detected coordinated voting campaigns"""
id = db.Column(db.Integer, primary_key=True)
model_id = db.Column(db.String(100), db.ForeignKey("model.id"), nullable=False)
model_type = db.Column(db.String(20), nullable=False)
detected_at = db.Column(db.DateTime, default=datetime.utcnow)
time_window_hours = db.Column(db.Integer, nullable=False) # Detection window (e.g., 6 hours)
vote_count = db.Column(db.Integer, nullable=False) # Total votes in the campaign
user_count = db.Column(db.Integer, nullable=False) # Number of users involved
confidence_score = db.Column(db.Float, nullable=False) # 0-1 confidence level
status = db.Column(db.String(20), default='active') # active, resolved, false_positive
admin_notes = db.Column(db.Text, nullable=True)
resolved_by = db.Column(db.Integer, db.ForeignKey("user.id"), nullable=True)
resolved_at = db.Column(db.DateTime, nullable=True)
model = db.relationship("Model", backref=db.backref("coordinated_campaigns", lazy=True))
resolver = db.relationship("User", backref=db.backref("resolved_campaigns", lazy=True))
def __repr__(self):
return f"<CoordinatedVotingCampaign {self.id}: {self.model_id} ({self.vote_count} votes, {self.user_count} users)>"
class CampaignParticipant(db.Model):
"""Track users involved in coordinated voting campaigns"""
id = db.Column(db.Integer, primary_key=True)
campaign_id = db.Column(db.Integer, db.ForeignKey("coordinated_voting_campaign.id"), nullable=False)
user_id = db.Column(db.Integer, db.ForeignKey("user.id"), nullable=False)
votes_in_campaign = db.Column(db.Integer, nullable=False)
first_vote_at = db.Column(db.DateTime, nullable=False)
last_vote_at = db.Column(db.DateTime, nullable=False)
suspicion_level = db.Column(db.String(20), nullable=False) # low, medium, high
campaign = db.relationship("CoordinatedVotingCampaign", backref=db.backref("participants", lazy=True))
user = db.relationship("User", backref=db.backref("campaign_participations", lazy=True))
def __repr__(self):
return f"<CampaignParticipant {self.user_id} in campaign {self.campaign_id} ({self.votes_in_campaign} votes)>"
class UserTimeout(db.Model):
"""Track user timeouts/bans for suspicious activity"""
id = db.Column(db.Integer, primary_key=True)
user_id = db.Column(db.Integer, db.ForeignKey("user.id"), nullable=False)
reason = db.Column(db.String(500), nullable=False) # Reason for timeout
timeout_type = db.Column(db.String(50), nullable=False) # coordinated_voting, rapid_voting, manual, etc.
created_at = db.Column(db.DateTime, default=datetime.utcnow)
expires_at = db.Column(db.DateTime, nullable=False)
created_by = db.Column(db.Integer, db.ForeignKey("user.id"), nullable=True) # Admin who created timeout
is_active = db.Column(db.Boolean, default=True)
cancelled_at = db.Column(db.DateTime, nullable=True)
cancelled_by = db.Column(db.Integer, db.ForeignKey("user.id"), nullable=True)
cancel_reason = db.Column(db.String(500), nullable=True)
# Related campaign if timeout was due to coordinated voting
related_campaign_id = db.Column(db.Integer, db.ForeignKey("coordinated_voting_campaign.id"), nullable=True)
user = db.relationship("User", foreign_keys=[user_id], backref=db.backref("timeouts", lazy=True))
creator = db.relationship("User", foreign_keys=[created_by], backref=db.backref("created_timeouts", lazy=True))
canceller = db.relationship("User", foreign_keys=[cancelled_by], backref=db.backref("cancelled_timeouts", lazy=True))
related_campaign = db.relationship("CoordinatedVotingCampaign", backref=db.backref("resulting_timeouts", lazy=True))
def is_currently_active(self):
"""Check if timeout is currently active"""
if not self.is_active:
return False
return datetime.utcnow() < self.expires_at
def __repr__(self):
return f"<UserTimeout {self.user_id}: {self.timeout_type} until {self.expires_at}>"
class ConsumedSentence(db.Model):
"""Track sentences that have been used to ensure each sentence is only used once"""
id = db.Column(db.Integer, primary_key=True)
sentence_hash = db.Column(db.String(64), unique=True, nullable=False, index=True) # SHA-256 hash
sentence_text = db.Column(db.Text, nullable=False) # Store original text for debugging/admin purposes
consumed_at = db.Column(db.DateTime, default=datetime.utcnow)
session_id = db.Column(db.String(100), nullable=True) # Track which session consumed it
usage_type = db.Column(db.String(20), nullable=False) # 'cache', 'direct', 'random'
def __repr__(self):
return f"<ConsumedSentence {self.sentence_hash[:8]}...({self.usage_type})>"
def calculate_elo_change(winner_elo, loser_elo, k_factor=32):
"""Calculate Elo rating changes for a match."""
expected_winner = 1 / (1 + math.pow(10, (loser_elo - winner_elo) / 400))
expected_loser = 1 / (1 + math.pow(10, (winner_elo - loser_elo) / 400))
winner_new_elo = winner_elo + k_factor * (1 - expected_winner)
loser_new_elo = loser_elo + k_factor * (0 - expected_loser)
return winner_new_elo, loser_new_elo
def anonymize_ip_address(ip_address):
"""
Remove the last 1-2 octets from an IP address for privacy compliance.
Examples:
- 192.168.1.100 -> 192.168.0.0
- 2001:db8::1 -> 2001:db8::
"""
if not ip_address:
return None
try:
if ':' in ip_address: # IPv6
# Keep first 4 groups, zero out the rest
parts = ip_address.split(':')
if len(parts) >= 4:
return ':'.join(parts[:4]) + '::'
return ip_address
else: # IPv4
# Keep first 2 octets, zero out last 2
parts = ip_address.split('.')
if len(parts) == 4:
return f"{parts[0]}.{parts[1]}.0.0"
return ip_address
except Exception:
return None
def record_vote(user_id, text, chosen_model_id, rejected_model_id, model_type,
session_duration=None, ip_address=None, user_agent=None,
generation_date=None, cache_hit=None, all_dataset_sentences=None):
"""Record a vote and update Elo ratings."""
# Determine sentence origin and whether it should count for public leaderboard
sentence_hash = hash_sentence(text)
sentence_origin = 'unknown'
counts_for_public = True
if all_dataset_sentences and text in all_dataset_sentences:
sentence_origin = 'dataset'
# For dataset sentences, check if already consumed to prevent fraud
# But now we'll mark as consumed AFTER successful vote recording
counts_for_public = not is_sentence_consumed(text)
else:
sentence_origin = 'custom'
counts_for_public = False # Custom sentences never count for public leaderboard
# Create the vote
vote = Vote(
user_id=user_id, # Required - user must be logged in to vote
text=text,
model_chosen=chosen_model_id,
model_rejected=rejected_model_id,
model_type=model_type,
session_duration_seconds=session_duration,
ip_address_partial=anonymize_ip_address(ip_address),
user_agent=user_agent[:500] if user_agent else None, # Truncate if too long
generation_date=generation_date,
cache_hit=cache_hit,
sentence_hash=sentence_hash,
sentence_origin=sentence_origin,
counts_for_public_leaderboard=counts_for_public,
)
db.session.add(vote)
db.session.flush() # Get the vote ID without committing
# Get the models
chosen_model = Model.query.filter_by(
id=chosen_model_id, model_type=model_type
).first()
rejected_model = Model.query.filter_by(
id=rejected_model_id, model_type=model_type
).first()
if not chosen_model or not rejected_model:
db.session.rollback()
return None, "One or both models not found for the specified model type"
# Only update Elo ratings and public stats if this vote counts for public leaderboard
if counts_for_public:
# Calculate new Elo ratings
new_chosen_elo, new_rejected_elo = calculate_elo_change(
chosen_model.current_elo, rejected_model.current_elo
)
# Update model stats
chosen_model.current_elo = new_chosen_elo
chosen_model.win_count += 1
chosen_model.match_count += 1
rejected_model.current_elo = new_rejected_elo
rejected_model.match_count += 1
else:
# For votes that don't count for public leaderboard, keep current Elo
new_chosen_elo = chosen_model.current_elo
new_rejected_elo = rejected_model.current_elo
# Record Elo history
chosen_history = EloHistory(
model_id=chosen_model_id,
elo_score=new_chosen_elo,
vote_id=vote.id,
model_type=model_type,
)
rejected_history = EloHistory(
model_id=rejected_model_id,
elo_score=new_rejected_elo,
vote_id=vote.id,
model_type=model_type,
)
db.session.add_all([chosen_history, rejected_history])
# Mark sentence as consumed AFTER successful vote recording (only for dataset sentences that count)
if counts_for_public and sentence_origin == 'dataset':
try:
mark_sentence_consumed(text, usage_type='voted')
except Exception as e:
# If consumption marking fails, log but don't fail the vote
logging.error(f"Failed to mark sentence as consumed after vote: {str(e)}")
db.session.commit()
return vote, None
def get_leaderboard_data(model_type):
"""
Get leaderboard data for the specified model type.
Only includes votes that count for the public leaderboard.
Args:
model_type (str): The model type ('tts' or 'conversational')
Returns:
list: List of dictionaries containing model data for the leaderboard
"""
query = Model.query.filter_by(model_type=model_type)
# Get models with >350 votes ordered by ELO score
# Note: Model.match_count now only includes votes that count for public leaderboard
models = query.filter(Model.match_count > 350).order_by(Model.current_elo.desc()).all()
result = []
for rank, model in enumerate(models, 1):
# Determine tier based on rank
if rank <= 2:
tier = "tier-s"
elif rank <= 4:
tier = "tier-a"
elif rank <= 7:
tier = "tier-b"
else:
tier = ""
result.append(
{
"rank": rank,
"id": model.id,
"name": model.name,
"model_url": model.model_url,
"win_rate": f"{model.win_rate:.0f}%",
"total_votes": model.match_count,
"elo": int(model.current_elo),
"tier": tier,
"is_open": model.is_open,
}
)
return result
def get_user_leaderboard(user_id, model_type):
"""
Get personalized leaderboard data for a specific user.
Includes ALL votes (both dataset and custom sentences).
Args:
user_id (int): The user ID
model_type (str): The model type ('tts' or 'conversational')
Returns:
list: List of dictionaries containing model data for the user's personal leaderboard
"""
# Get all models of the specified type
models = Model.query.filter_by(model_type=model_type).all()
# Get user's votes (includes both public and custom sentence votes)
user_votes = Vote.query.filter_by(user_id=user_id, model_type=model_type).all()
# Calculate win counts and match counts for each model based on user's votes
model_stats = {model.id: {"wins": 0, "matches": 0} for model in models}
for vote in user_votes:
model_stats[vote.model_chosen]["wins"] += 1
model_stats[vote.model_chosen]["matches"] += 1
model_stats[vote.model_rejected]["matches"] += 1
# Calculate win rates and prepare result
result = []
for model in models:
stats = model_stats[model.id]
win_rate = (
(stats["wins"] / stats["matches"] * 100) if stats["matches"] > 0 else 0
)
# Only include models the user has voted on
if stats["matches"] > 0:
result.append(
{
"id": model.id,
"name": model.name,
"model_url": model.model_url,
"win_rate": f"{win_rate:.0f}%",
"total_votes": stats["matches"],
"wins": stats["wins"],
"is_open": model.is_open,
}
)
# Sort by win rate descending
result.sort(key=lambda x: float(x["win_rate"].rstrip("%")), reverse=True)
# Add rank
for i, item in enumerate(result, 1):
item["rank"] = i
return result
def get_historical_leaderboard_data(model_type, target_date=None):
"""
Get leaderboard data at a specific date in history.
Args:
model_type (str): The model type ('tts' or 'conversational')
target_date (datetime): The target date for historical data, defaults to current time
Returns:
list: List of dictionaries containing model data for the historical leaderboard
"""
if not target_date:
target_date = datetime.utcnow()
# Get all models of the specified type
models = Model.query.filter_by(model_type=model_type).all()
# Create a result list for the models
result = []
for model in models:
# Get the most recent EloHistory entry for each model before the target date
elo_entry = (
EloHistory.query.filter(
EloHistory.model_id == model.id,
EloHistory.model_type == model_type,
EloHistory.timestamp <= target_date,
)
.order_by(EloHistory.timestamp.desc())
.first()
)
# Skip models that have no history before the target date
if not elo_entry:
continue
# Count wins and matches up to the target date (only public leaderboard votes)
match_count = Vote.query.filter(
db.or_(Vote.model_chosen == model.id, Vote.model_rejected == model.id),
Vote.model_type == model_type,
Vote.vote_date <= target_date,
Vote.counts_for_public_leaderboard == True,
).count()
win_count = Vote.query.filter(
Vote.model_chosen == model.id,
Vote.model_type == model_type,
Vote.vote_date <= target_date,
Vote.counts_for_public_leaderboard == True,
).count()
# Calculate win rate
win_rate = (win_count / match_count * 100) if match_count > 0 else 0
# Add to result
result.append(
{
"id": model.id,
"name": model.name,
"model_url": model.model_url,
"win_rate": f"{win_rate:.0f}%",
"total_votes": match_count,
"elo": int(elo_entry.elo_score),
"is_open": model.is_open,
}
)
# Sort by ELO score descending
result.sort(key=lambda x: x["elo"], reverse=True)
# Add rank and tier
for i, item in enumerate(result, 1):
item["rank"] = i
# Determine tier based on rank
if i <= 2:
item["tier"] = "tier-s"
elif i <= 4:
item["tier"] = "tier-a"
elif i <= 7:
item["tier"] = "tier-b"
else:
item["tier"] = ""
return result
def get_key_historical_dates(model_type):
"""
Get a list of key dates in the leaderboard history.
Args:
model_type (str): The model type ('tts' or 'conversational')
Returns:
list: List of datetime objects representing key dates
"""
# Get first and most recent vote dates
first_vote = (
Vote.query.filter_by(model_type=model_type)
.order_by(Vote.vote_date.asc())
.first()
)
last_vote = (
Vote.query.filter_by(model_type=model_type)
.order_by(Vote.vote_date.desc())
.first()
)
if not first_vote or not last_vote:
return []
# Generate a list of key dates - first day of each month between the first and last vote
dates = []
current_date = first_vote.vote_date.replace(day=1)
end_date = last_vote.vote_date
while current_date <= end_date:
dates.append(current_date)
# Move to next month
if current_date.month == 12:
current_date = current_date.replace(year=current_date.year + 1, month=1)
else:
current_date = current_date.replace(month=current_date.month + 1)
# Add latest date
if dates and dates[-1].month != end_date.month or dates[-1].year != end_date.year:
dates.append(end_date)
return dates
def insert_initial_models():
"""Insert initial models into the database."""
tts_models = [
Model(
id="eleven-multilingual-v2",
name="Eleven Multilingual v2",
model_type=ModelType.TTS,
is_open=False,
model_url="https://elevenlabs.io/",
),
Model(
id="eleven-turbo-v2.5",
name="Eleven Turbo v2.5",
model_type=ModelType.TTS,
is_open=False,
model_url="https://elevenlabs.io/",
),
Model(
id="eleven-flash-v2.5",
name="Eleven Flash v2.5",
model_type=ModelType.TTS,
is_open=False,
model_url="https://elevenlabs.io/",
),
Model(
id="cartesia-sonic-2",
name="Cartesia Sonic 2",
model_type=ModelType.TTS,
is_open=False,
is_active=False, # ran out of credits
model_url="https://cartesia.ai/",
),
Model(
id="spark-tts",
name="Spark TTS",
model_type=ModelType.TTS,
is_open=False,
is_active=False, # API stopped working
model_url="https://github.com/SparkAudio/Spark-TTS",
),
Model(
id="playht-2.0",
name="PlayHT 2.0",
model_type=ModelType.TTS,
is_open=False,
is_active=False,
model_url="https://play.ht/",
),
Model(
id="styletts2",
name="StyleTTS 2",
model_type=ModelType.TTS,
is_open=False,
is_active=False,
model_url="https://github.com/yl4579/StyleTTS2",
),
Model(
id="kokoro-v1",
name="Kokoro v1.0",
model_type=ModelType.TTS,
is_open=True,
model_url="https://huggingface.co/hexgrad/Kokoro-82M",
),
Model(
id="cosyvoice-2.0",
name="CosyVoice 2.0",
model_type=ModelType.TTS,
is_open=True,
model_url="https://github.com/FunAudioLLM/CosyVoice",
),
Model(
id="papla-p1",
name="Papla P1",
model_type=ModelType.TTS,
is_open=False,
model_url="https://papla.media/",
),
Model(
id="hume-octave",
name="Hume Octave",
model_type=ModelType.TTS,
is_open=False,
model_url="https://hume.ai/",
),
Model(
id="megatts3",
name="MegaTTS 3",
model_type=ModelType.TTS,
is_active=False,
is_open=True,
model_url="https://github.com/bytedance/MegaTTS3",
),
Model(
id="minimax-02-hd",
name="MiniMax Speech-02-HD",
model_type=ModelType.TTS,
is_open=False,
model_url="http://minimax.io/",
),
Model(
id="minimax-02-turbo",
name="MiniMax Speech-02-Turbo",
model_type=ModelType.TTS,
is_open=False,
model_url="http://minimax.io/",
),
Model(
id="lanternfish-1",
name="OpenAudio S1",
model_type=ModelType.TTS,
is_open=False,
is_active=False, # NOTE: Waiting to receive a pool of voices
model_url="https://fish.audio/",
),
Model(
id="chatterbox",
name="Chatterbox",
model_type=ModelType.TTS,
is_open=False,
is_active=True,
model_url="https://www.resemble.ai/chatterbox/",
),
Model(
id="inworld",
name="Inworld TTS",
model_type=ModelType.TTS,
is_open=False,
is_active=True,
model_url="https://inworld.ai/tts",
),
Model(
id="async-1",
name="CastleFlow v1.0",
model_type=ModelType.TTS,
is_open=False,
is_active=True,
model_url="https://async.ai/",
),
Model(
id="nls-pre-v1",
name="NLS Pre V1",
model_type=ModelType.TTS,
is_open=False,
is_active=True,
model_url="https://ttsarena.org/",
),
Model(
id="wordcab",
name="Wordcab TTS",
model_type=ModelType.TTS,
is_open=False,
is_active=True,
model_url="https://wordcab.com/",
),
]
conversational_models = [
Model(
id="csm-1b",
name="CSM 1B",
model_type=ModelType.CONVERSATIONAL,
is_open=True,
model_url="https://huggingface.co/sesame/csm-1b",
),
Model(
id="playdialog-1.0",
name="PlayDialog 1.0",
model_type=ModelType.CONVERSATIONAL,
is_open=False,
model_url="https://play.ht/",
),
Model(
id="dia-1.6b",
name="Dia 1.6B",
model_type=ModelType.CONVERSATIONAL,
is_open=True,
model_url="https://huggingface.co/nari-labs/Dia-1.6B",
),
]
all_models = tts_models + conversational_models
for model in all_models:
existing = Model.query.filter_by(
id=model.id, model_type=model.model_type
).first()
if not existing:
db.session.add(model)
else:
# Update model attributes if they've changed, but preserve other data
existing.name = model.name
existing.is_open = model.is_open
existing.model_url = model.model_url
if model.is_active is not None:
existing.is_active = model.is_active
db.session.commit()
def get_top_voters(limit=10):
"""
Get the top voters by number of votes.
Args:
limit (int): Number of users to return
Returns:
list: List of dictionaries containing user data and vote counts
"""
# Query users who have opted in to the leaderboard and have at least one vote
top_users = db.session.query(
User, func.count(Vote.id).label('vote_count')
).join(Vote).filter(
User.show_in_leaderboard == True
).group_by(User.id).order_by(
func.count(Vote.id).desc()
).limit(limit).all()
result = []
for i, (user, vote_count) in enumerate(top_users, 1):
result.append({
"rank": i,
"username": user.username,
"vote_count": vote_count,
"join_date": user.join_date.strftime("%b %d, %Y")
})
return result
def toggle_user_leaderboard_visibility(user_id):
"""Toggle user's leaderboard visibility setting"""
user = User.query.get(user_id)
if not user:
return None
user.show_in_leaderboard = not user.show_in_leaderboard
db.session.commit()
return user.show_in_leaderboard
def check_user_timeout(user_id):
"""Check if a user is currently timed out"""
if not user_id:
return False, None
active_timeout = UserTimeout.query.filter_by(
user_id=user_id,
is_active=True
).filter(
UserTimeout.expires_at > datetime.utcnow()
).order_by(UserTimeout.expires_at.desc()).first()
return active_timeout is not None, active_timeout
def create_user_timeout(user_id, reason, timeout_type, duration_days, created_by=None, related_campaign_id=None):
"""Create a new user timeout"""
expires_at = datetime.utcnow() + timedelta(days=duration_days)
timeout = UserTimeout(
user_id=user_id,
reason=reason,
timeout_type=timeout_type,
expires_at=expires_at,
created_by=created_by,
related_campaign_id=related_campaign_id
)
db.session.add(timeout)
db.session.commit()
return timeout
def cancel_user_timeout(timeout_id, cancelled_by, cancel_reason):
"""Cancel an active timeout"""
timeout = UserTimeout.query.get(timeout_id)
if not timeout:
return False, "Timeout not found"
timeout.is_active = False
timeout.cancelled_at = datetime.utcnow()
timeout.cancelled_by = cancelled_by
timeout.cancel_reason = cancel_reason
db.session.commit()
return True, "Timeout cancelled successfully"
def log_coordinated_campaign(model_id, model_type, vote_count, user_count,
time_window_hours, confidence_score, participants_data):
"""Log a detected coordinated voting campaign"""
campaign = CoordinatedVotingCampaign(
model_id=model_id,
model_type=model_type,
time_window_hours=time_window_hours,
vote_count=vote_count,
user_count=user_count,
confidence_score=confidence_score
)
db.session.add(campaign)
db.session.flush() # Get campaign ID
# Add participants
for participant_data in participants_data:
participant = CampaignParticipant(
campaign_id=campaign.id,
user_id=participant_data['user_id'],
votes_in_campaign=participant_data['votes_in_campaign'],
first_vote_at=participant_data['first_vote_at'],
last_vote_at=participant_data['last_vote_at'],
suspicion_level=participant_data['suspicion_level']
)
db.session.add(participant)
db.session.commit()
return campaign
def get_user_timeouts(user_id=None, active_only=True, limit=50):
"""Get user timeouts with optional filtering"""
query = UserTimeout.query
if user_id:
query = query.filter_by(user_id=user_id)
if active_only:
query = query.filter_by(is_active=True).filter(
UserTimeout.expires_at > datetime.utcnow()
)
return query.order_by(UserTimeout.created_at.desc()).limit(limit).all()
def get_coordinated_campaigns(status=None, limit=50):
"""Get coordinated voting campaigns with optional status filtering"""
query = CoordinatedVotingCampaign.query
if status:
query = query.filter_by(status=status)
return query.order_by(CoordinatedVotingCampaign.detected_at.desc()).limit(limit).all()
def resolve_campaign(campaign_id, resolved_by, status, admin_notes=None):
"""Mark a campaign as resolved"""
campaign = CoordinatedVotingCampaign.query.get(campaign_id)
if not campaign:
return False, "Campaign not found"
campaign.status = status
campaign.resolved_by = resolved_by
campaign.resolved_at = datetime.utcnow()
if admin_notes:
campaign.admin_notes = admin_notes
db.session.commit()
return True, "Campaign resolved successfully"
def hash_sentence(sentence_text):
"""Generate a SHA-256 hash for a sentence"""
return hashlib.sha256(sentence_text.strip().encode('utf-8')).hexdigest()
def is_sentence_consumed(sentence_text):
"""Check if a sentence has already been consumed"""
sentence_hash = hash_sentence(sentence_text)
return ConsumedSentence.query.filter_by(sentence_hash=sentence_hash).first() is not None
def mark_sentence_consumed(sentence_text, session_id=None, usage_type='direct'):
"""Mark a sentence as consumed"""
sentence_hash = hash_sentence(sentence_text)
# Check if already consumed
existing = ConsumedSentence.query.filter_by(sentence_hash=sentence_hash).first()
if existing:
return existing # Already consumed
consumed_sentence = ConsumedSentence(
sentence_hash=sentence_hash,
sentence_text=sentence_text,
session_id=session_id,
usage_type=usage_type
)
db.session.add(consumed_sentence)
db.session.commit()
return consumed_sentence
def get_unconsumed_sentences(sentence_pool):
"""Filter a list of sentences to only include unconsumed ones"""
if not sentence_pool:
return []
# Get all consumed sentence hashes
consumed_hashes = set(
row[0] for row in db.session.query(ConsumedSentence.sentence_hash).all()
)
# Filter out consumed sentences
unconsumed = []
for sentence in sentence_pool:
if hash_sentence(sentence) not in consumed_hashes:
unconsumed.append(sentence)
return unconsumed
def get_consumed_sentences_count():
"""Get the total count of consumed sentences"""
return ConsumedSentence.query.count()
def get_random_unconsumed_sentence(sentence_pool):
"""Get a random unconsumed sentence from the pool"""
unconsumed = get_unconsumed_sentences(sentence_pool)
if not unconsumed:
return None
import random
return random.choice(unconsumed)
|