File size: 13,653 Bytes
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9acc98b
 
5769ee4
 
 
 
 
 
 
 
 
 
 
 
9acc98b
5769ee4
 
 
 
 
 
9acc98b
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9acc98b
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9acc98b
5769ee4
 
 
 
 
 
 
9acc98b
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
9acc98b
5769ee4
 
 
 
 
 
9acc98b
5769ee4
 
 
 
 
 
 
 
 
9acc98b
5769ee4
 
 
 
 
 
 
 
9acc98b
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc5996
5769ee4
 
 
 
 
 
0bc5996
5769ee4
 
 
 
 
 
 
 
 
 
9acc98b
2e1acbc
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e683d10
5769ee4
 
 
 
 
 
 
 
e683d10
 
 
 
 
5769ee4
 
 
 
e683d10
 
 
 
 
 
 
 
 
 
 
 
5769ee4
 
 
 
 
 
 
 
 
 
2e1acbc
 
5769ee4
2e1acbc
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
2e1acbc
 
5769ee4
 
 
 
 
 
 
 
e683d10
5769ee4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
from datasets import load_dataset, Dataset
import fire
from functools import partial, update_wrapper
import numpy
import os
from typing import Dict, Iterable, Tuple
import sys
import time
import torch

import gradio as gr
from huggingface_hub import hf_hub_download
from mmcv import Config
import plotly.graph_objects as go
from torch.utils.data.dataloader import DataLoader

from risk_biased.utils.load_model import get_predictor
from risk_biased.utils.torch_utils import load_weights
from risk_biased.utils.waymo_dataloader import WaymoDataloaders
from risk_biased.predictors.biased_predictor import (
    LitTrajectoryPredictor,
)


def to_numpy(**kwargs):
    dic_outputs = {}
    for k, v in kwargs.items():
        dic_outputs[k] = v.detach().cpu().numpy()
    return dic_outputs


def get_scatter_data(x, mask_x, name, **kwargs):
    return [
        go.Scatter(
            x=x[k, mask_x[k], 0],
            y=x[k, mask_x[k], 1],
            showlegend=k == 0,
            name=name,
            **kwargs,
        )
        for k in range(x.shape[0])
    ]


def configuration_paths() -> Iterable[os.PathLike]:
    working_dir = os.path.dirname(os.path.realpath(__file__))
    return [
        os.path.join(
            working_dir,
            "../../risk_biased/config",
            config_file,
        )
        for config_file in ("learning_config.py", "waymo_config.py")
    ]


def load_item(index: int, dataset: Dataset, device: str = "cpu") -> Tuple:
    x = torch.from_numpy(numpy.array(dataset[index]["x"]).astype(numpy.float32)).to(device)
    mask_x = torch.from_numpy(numpy.array(dataset[index]["mask_x"]).astype(numpy.bool8)).to(device)
    y = torch.from_numpy(numpy.array(dataset[index]["y"]).astype(numpy.float32)).to(device)
    mask_y = torch.from_numpy(numpy.array(dataset[index]["mask_y"]).astype(numpy.bool8)).to(device)
    mask_loss = torch.from_numpy( numpy.array(dataset[index]["mask_loss"]).astype(numpy.bool8)).to(device)
    map_data = torch.from_numpy(numpy.array(dataset[index]["map_data"]).astype(numpy.float32)).to(device)
    mask_map = torch.from_numpy(numpy.array(dataset[index]["mask_map"]).astype(numpy.bool8)).to(device)
    offset = torch.from_numpy(numpy.array(dataset[index]["offset"]).astype(numpy.float32)).to(device)
    x_ego = torch.from_numpy(numpy.array(dataset[index]["x_ego"]).astype(numpy.float32)).to(device)
    y_ego = torch.from_numpy(numpy.array(dataset[index]["y_ego"]).astype(numpy.float32)).to(device)

    return (x, mask_x, map_data, mask_map, offset, x_ego, y_ego), y, mask_y, mask_loss


def build_data(
    predictor: LitTrajectoryPredictor,
    dataset: Dataset,
    index: int,
    risk_level: float,
    n_samples: int,
) -> Dict[str, go.Scatter]:
    assert n_samples >= 1

    batch, y, mask_y, mask_loss = load_item(index, dataset, predictor.device)
    predictions = predictor.predict_step(
        batch=batch,
        risk_level=risk_level,
        n_samples=n_samples,
    )

    offset = batch[4]
    y = predictor._unnormalize_trajectory(y, offset)
    x = predictor._unnormalize_trajectory(batch[0], offset)
    numpy_data = to_numpy(
        predictions=predictions,
        y=y,
        mask_y=mask_y,
        x=x,
        mask_x=batch[1],
        map_data=batch[2],
        mask_map=batch[3],
        mask_pred=mask_loss,
    )

    x = numpy_data["x"][0]
    mask_x = numpy_data["mask_x"][0]
    y = numpy_data["y"][0]
    mask_y = numpy_data["mask_y"][0]
    pred = numpy_data["predictions"][0]
    mask_pred = numpy_data["mask_pred"][0]
    map_data = numpy_data["map_data"][0]
    mask_map = numpy_data["mask_map"][0]
    
    marker_size = 12

    data_x = get_scatter_data(
        x,
        mask_x,
        mode="lines",
        line=dict(width=2, color="black"),
        name="Past",
    )
    ego_present = get_scatter_data(
        x=x[0:1, -1:],
        mask_x=mask_x[0:1, -1:],
        mode="markers",
        marker=dict(color="blue", size=marker_size, opacity=0.5),
        name="Ego",
    )
    agent_present = get_scatter_data(
        x=x[1:2, -1:],
        mask_x=mask_x[1:2, -1:],
        mode="markers",
        marker=dict(color="green", size=marker_size, opacity=0.5),
        name="Agent",
    )
    
    data_y = get_scatter_data(
        y,
        mask_y,
        mode="lines",
        line=dict(width=2, color="green"),
        name="Ground truth",
    )
    data_map = get_scatter_data(
        map_data,
        mask_map,
        mode="lines",
        line=dict(width=15, color="gray"),
        opacity=0.3,
        name="Centerline",
    )
    data_pred = []
    forecasts_end = []
    for i in range(n_samples):
        cur_data_pred = get_scatter_data(
            pred[:, i],
            mask_pred,
            mode="lines",
            line=dict(width=2, color="red"),
            name="Forecast",
        )
        data_pred += cur_data_pred
            
        forecast_end = get_scatter_data(
            pred[:, i, -1:],
            mask_pred[:, -1:],
            mode="markers",
            marker=dict(color="red", size=marker_size/2, opacity=0.5, symbol="x"),
            name="Forecast end",
        )
        forecasts_end += forecast_end

    static_data = data_map + data_x + data_y + data_pred + ego_present + agent_present + forecasts_end
    
    animation_opacity = 0.5
    frames_x = [
        go.Frame(
            data=[
                go.Scatter(
                    x=x[mask_x[:, k], k, 0],
                    y=x[mask_x[:, k], k, 1],
                    mode="markers",
                    opacity=animation_opacity,
                    marker=dict(color="black", size=marker_size),
                    showlegend=False,
                ),
                go.Scatter(
                    x=x[0:1, k, 0],
                    y=x[0:1, k, 1],
                    mode="markers",
                    opacity=animation_opacity,
                    marker=dict(color="blue", size=marker_size),
                    showlegend=False,
                ),
            ]
        )
        for k in range(x.shape[1])
    ]

    frames_y_pred = []
    for k in range(y.shape[1]):
        cur_gt_agent_data = go.Scatter(
            x=y[1:2][mask_y[1:2, k], k, 0],
            y=y[1:2][mask_y[1:2, k], k, 1],
            mode="markers",
            opacity=animation_opacity,
            marker=dict(color="green", size=marker_size),
        )
        cur_gt_future_data = go.Scatter(
            x=y[2:][mask_y[2:, k], k, 0],
            y=y[2:][mask_y[2:, k], k, 1],
            mode="markers",
            opacity=animation_opacity,
            marker=dict(color="black", size=marker_size),
        )
        cur_pred_data = []
        for i in range(n_samples):
            cur_pred_data.append(
                go.Scatter(
                    x=pred[mask_pred[:, k], i, k, 0],
                    y=pred[mask_pred[:, k], i, k, 1],
                    mode="markers",
                    opacity=animation_opacity,
                    marker=dict(color="red", size=marker_size),
                    showlegend=False,
                )
            )
        cur_ego_data = go.Scatter(
            x=y[0:1, k, 0],
            y=y[0:1, k, 1],
            mode="markers",
            opacity=animation_opacity,
            marker=dict(color="blue", size=marker_size),
        )
        cur_data = [cur_gt_agent_data, cur_gt_future_data, *cur_pred_data, cur_ego_data]
        frame = go.Frame(data=cur_data)
        frames_y_pred.append(frame)


    return {"frames": frames_x + frames_y_pred, "data": static_data}


def prediction_plot(
    predictor: LitTrajectoryPredictor,
    dataset: Dataset,
    index: int,
    risk_level: float,
    n_samples: int = 1,
    use_biaser: bool = True,
) -> go.Figure:
    range_radius = 80
    if use_biaser:
        risk_level = float(risk_level)
    else:
        risk_level = None
    layout = go.Layout(
        xaxis=dict(
            range=[-0.5*range_radius, 1.5*range_radius],
            autorange=False,
            zeroline=False,
        ),
        yaxis=dict(
            range=[-range_radius, range_radius],
            autorange=False,
            zeroline=False,
        ),
        title_text="Road Scene",
        hovermode="closest",
        width=800,
        height=600,
        updatemenus=[
            dict(
                type="buttons",
                buttons=[
                    dict(
                        label="Play",
                        method="animate",
                        args=[
                            None,
                            dict(
                                frame=dict(duration=100, redraw=False),
                                mode="immediate",
                                fromcurrent=True,
                            ),
                        ],
                    ),
                    dict(
                        label="Pause",
                        method="animate",
                        args=[[None], {"frame": {"duration": 0, "redraw": False},
                            "mode": "immediate",
                            "transition": {"duration": 0}}],
                    )
                ],
            )
        ],
    )

    fig = go.Figure(
        **build_data(predictor, dataset, index, risk_level, n_samples),
        layout=layout,
    )
    fig.update_geos(projection_type="equirectangular", visible=True, resolution=110)

    return fig

def get_figure(
    predictor: LitTrajectoryPredictor,
    dataset: Dataset,
    index: int,
    risk_level: float,
    n_samples: int,
) -> go.Figure:
        
    fig = prediction_plot(
        predictor, dataset, index, risk_level, n_samples, use_biaser=True
    )
    fig.update_layout()

    return fig

def update_figure(
    predictor: LitTrajectoryPredictor,
    dataset: Dataset,
    index: int,
    risk_level: float,
    n_samples: int,
    image = None
) -> go.Figure:
        
    fig = prediction_plot(
        predictor, dataset, index, risk_level, n_samples, use_biaser=True
    )
    fig.update_layout()

    return fig

def load_predictor_from_hf(model_source: str = "TRI-ML/risk_biased_model", config_name: str="learning_config.py", checkpoint_name: str = "last.ckpt", device: str = "cpu") -> Tuple[LitTrajectoryPredictor, Dataset]:
    config_file = hf_hub_download(model_source, filename=config_name, use_auth_token=os.getenv('SECRET_AUTH_TOKEN'))
    ckpt = torch.load(hf_hub_download(model_source, filename=checkpoint_name, use_auth_token=os.getenv('SECRET_AUTH_TOKEN')), map_location="cpu")
    cfg = Config.fromfile(config_file)
    predictor = get_predictor(cfg, WaymoDataloaders.unnormalize_trajectory)
    predictor = load_weights(predictor, ckpt)
    predictor.eval()
    predictor = predictor.to(device)
    
    return predictor

def load_dataset_from_hf(data_source: str = "jmercat/risk_biased_dataset") -> Dataset:
    dataset = load_dataset(data_source, split="test")
    return dataset

def main(load_from=None, cfg_path=None):
    # Define the device to use
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("Getting dataset")
    dataset = load_dataset_from_hf()
        
    if load_from is not None:
        cfg = Config.fromfile(cfg_path)
        predictor = get_predictor(cfg, WaymoDataloaders.unnormalize_trajectory)
        predictor = load_weights(predictor, torch.load(load_from, map_location="cpu"))
    else:
        print("Getting model.")
        predictor = load_predictor_from_hf(device=device)

    ui_update_fn = partial(update_figure, predictor, dataset)
    
    # Do the same thing as above but using the gradio blocks API
    with gr.Blocks() as interface:

        gr.Markdown(
        """
            # Risk-Aware Prediction
            
            Make predictions for the green agent with a risk-seeking bias towards the ego vehicle in blue.
            The risk level is a value between 0 and 1, where 0 is not risk-seeking and 1 is the most risk-seeking.
            Once the sliders are set, click the "Run" button to see the predictions.
            The play button will animate the prediction over time (it is slow especially with many samples).
            
            For more information, see the paper [RAP: Risk-Aware Prediction for Robust Planning](https://arxiv.org/abs/2210.01368) published at [CoRL 2022](https://corl2022.org/).
        """)
        initial_index = 27
        initial_n_samples = 10
        image = gr.Plot(get_figure(predictor, dataset, initial_index, 0, initial_n_samples))
        interface.queue()
        index = gr.Slider(
            minimum=0,
            maximum=len(dataset)-1,
            step=1,
            value=initial_index,
            label="Index",
        )
        risk_level = gr.Slider(minimum=0, maximum=1, step=0.01, label="Risk")
        n_samples = gr.Slider(minimum=1, maximum=20, step=1, value=initial_n_samples, label="Number of prediction samples")
        button = gr.Button(label="Run")

        # Removed the interactive plot because it was running on the first change and all changes made during computation were ignored
        # This caused the plot to be out of sync with the sliders
        # index.change(ui_update_fn, inputs=[index, risk_level, n_samples, image], outputs=image)
        # risk_level.change(ui_update_fn, inputs=[index, risk_level, n_samples, image], outputs=image)
        # n_samples.change(ui_update_fn, inputs=[index, risk_level, n_samples, image], outputs=image)
        button.click(ui_update_fn, inputs=[index, risk_level, n_samples, image], outputs=image)

        interface.launch(debug=False)


if __name__ == "__main__":
    fire.Fire(main)