Spaces:
Running
Running
correction, sdk version, plot size
Browse files- README.md +1 -0
- scripts/scripts_utils/plotly_interface.py +13 -12
README.md
CHANGED
@@ -4,6 +4,7 @@ emoji: 🚙
|
|
4 |
colorFrom: red
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
|
|
7 |
app_file: app.py
|
8 |
pinned: false
|
9 |
language:
|
|
|
4 |
colorFrom: red
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.8
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
language:
|
scripts/scripts_utils/plotly_interface.py
CHANGED
@@ -107,6 +107,8 @@ def build_data(
|
|
107 |
mask_pred = numpy_data["mask_pred"][0]
|
108 |
map_data = numpy_data["map_data"][0]
|
109 |
mask_map = numpy_data["mask_map"][0]
|
|
|
|
|
110 |
|
111 |
data_x = get_scatter_data(
|
112 |
x,
|
@@ -119,14 +121,14 @@ def build_data(
|
|
119 |
x=x[0:1, -1:],
|
120 |
mask_x=mask_x[0:1, -1:],
|
121 |
mode="markers",
|
122 |
-
marker=dict(color="blue", size=
|
123 |
name="Ego",
|
124 |
)
|
125 |
agent_present = get_scatter_data(
|
126 |
x=x[1:2, -1:],
|
127 |
mask_x=mask_x[1:2, -1:],
|
128 |
mode="markers",
|
129 |
-
marker=dict(color="green", size=
|
130 |
name="Agent",
|
131 |
)
|
132 |
|
@@ -161,7 +163,7 @@ def build_data(
|
|
161 |
pred[:, i, -1:],
|
162 |
mask_pred[:, -1:],
|
163 |
mode="markers",
|
164 |
-
marker=dict(color="red", size=
|
165 |
name="Forecast end",
|
166 |
)
|
167 |
forecasts_end += forecast_end
|
@@ -177,7 +179,7 @@ def build_data(
|
|
177 |
y=x[mask_x[:, k], k, 1],
|
178 |
mode="markers",
|
179 |
opacity=animation_opacity,
|
180 |
-
marker=dict(color="black", size=
|
181 |
showlegend=False,
|
182 |
),
|
183 |
go.Scatter(
|
@@ -185,7 +187,7 @@ def build_data(
|
|
185 |
y=x[0:1, k, 1],
|
186 |
mode="markers",
|
187 |
opacity=animation_opacity,
|
188 |
-
marker=dict(color="blue", size=
|
189 |
showlegend=False,
|
190 |
),
|
191 |
]
|
@@ -200,14 +202,14 @@ def build_data(
|
|
200 |
y=y[1:2][mask_y[1:2, k], k, 1],
|
201 |
mode="markers",
|
202 |
opacity=animation_opacity,
|
203 |
-
marker=dict(color="green", size=
|
204 |
)
|
205 |
cur_gt_future_data = go.Scatter(
|
206 |
x=y[2:][mask_y[2:, k], k, 0],
|
207 |
y=y[2:][mask_y[2:, k], k, 1],
|
208 |
mode="markers",
|
209 |
opacity=animation_opacity,
|
210 |
-
marker=dict(color="black", size=
|
211 |
)
|
212 |
cur_pred_data = []
|
213 |
for i in range(n_samples):
|
@@ -217,7 +219,7 @@ def build_data(
|
|
217 |
y=pred[mask_pred[:, k], i, k, 1],
|
218 |
mode="markers",
|
219 |
opacity=animation_opacity,
|
220 |
-
marker=dict(color="red", size=
|
221 |
showlegend=False,
|
222 |
)
|
223 |
)
|
@@ -226,7 +228,7 @@ def build_data(
|
|
226 |
y=y[0:1, k, 1],
|
227 |
mode="markers",
|
228 |
opacity=animation_opacity,
|
229 |
-
marker=dict(color="blue", size=
|
230 |
)
|
231 |
cur_data = [cur_gt_agent_data, cur_gt_future_data, *cur_pred_data, cur_ego_data]
|
232 |
frame = go.Frame(data=cur_data)
|
@@ -262,8 +264,8 @@ def prediction_plot(
|
|
262 |
),
|
263 |
title_text="Road Scene",
|
264 |
hovermode="closest",
|
265 |
-
width=
|
266 |
-
height=
|
267 |
updatemenus=[
|
268 |
dict(
|
269 |
type="buttons",
|
@@ -274,7 +276,6 @@ def prediction_plot(
|
|
274 |
args=[
|
275 |
None,
|
276 |
dict(
|
277 |
-
transition=dict(duration=100),
|
278 |
frame=dict(duration=100, redraw=False),
|
279 |
mode="immediate",
|
280 |
fromcurrent=True,
|
|
|
107 |
mask_pred = numpy_data["mask_pred"][0]
|
108 |
map_data = numpy_data["map_data"][0]
|
109 |
mask_map = numpy_data["mask_map"][0]
|
110 |
+
|
111 |
+
marker_size = 12
|
112 |
|
113 |
data_x = get_scatter_data(
|
114 |
x,
|
|
|
121 |
x=x[0:1, -1:],
|
122 |
mask_x=mask_x[0:1, -1:],
|
123 |
mode="markers",
|
124 |
+
marker=dict(color="blue", size=marker_size, opacity=0.5),
|
125 |
name="Ego",
|
126 |
)
|
127 |
agent_present = get_scatter_data(
|
128 |
x=x[1:2, -1:],
|
129 |
mask_x=mask_x[1:2, -1:],
|
130 |
mode="markers",
|
131 |
+
marker=dict(color="green", size=marker_size, opacity=0.5),
|
132 |
name="Agent",
|
133 |
)
|
134 |
|
|
|
163 |
pred[:, i, -1:],
|
164 |
mask_pred[:, -1:],
|
165 |
mode="markers",
|
166 |
+
marker=dict(color="red", size=marker_size/2, opacity=0.5, symbol="x"),
|
167 |
name="Forecast end",
|
168 |
)
|
169 |
forecasts_end += forecast_end
|
|
|
179 |
y=x[mask_x[:, k], k, 1],
|
180 |
mode="markers",
|
181 |
opacity=animation_opacity,
|
182 |
+
marker=dict(color="black", size=marker_size),
|
183 |
showlegend=False,
|
184 |
),
|
185 |
go.Scatter(
|
|
|
187 |
y=x[0:1, k, 1],
|
188 |
mode="markers",
|
189 |
opacity=animation_opacity,
|
190 |
+
marker=dict(color="blue", size=marker_size),
|
191 |
showlegend=False,
|
192 |
),
|
193 |
]
|
|
|
202 |
y=y[1:2][mask_y[1:2, k], k, 1],
|
203 |
mode="markers",
|
204 |
opacity=animation_opacity,
|
205 |
+
marker=dict(color="green", size=marker_size),
|
206 |
)
|
207 |
cur_gt_future_data = go.Scatter(
|
208 |
x=y[2:][mask_y[2:, k], k, 0],
|
209 |
y=y[2:][mask_y[2:, k], k, 1],
|
210 |
mode="markers",
|
211 |
opacity=animation_opacity,
|
212 |
+
marker=dict(color="black", size=marker_size),
|
213 |
)
|
214 |
cur_pred_data = []
|
215 |
for i in range(n_samples):
|
|
|
219 |
y=pred[mask_pred[:, k], i, k, 1],
|
220 |
mode="markers",
|
221 |
opacity=animation_opacity,
|
222 |
+
marker=dict(color="red", size=marker_size),
|
223 |
showlegend=False,
|
224 |
)
|
225 |
)
|
|
|
228 |
y=y[0:1, k, 1],
|
229 |
mode="markers",
|
230 |
opacity=animation_opacity,
|
231 |
+
marker=dict(color="blue", size=marker_size),
|
232 |
)
|
233 |
cur_data = [cur_gt_agent_data, cur_gt_future_data, *cur_pred_data, cur_ego_data]
|
234 |
frame = go.Frame(data=cur_data)
|
|
|
264 |
),
|
265 |
title_text="Road Scene",
|
266 |
hovermode="closest",
|
267 |
+
width=800,
|
268 |
+
height=400,
|
269 |
updatemenus=[
|
270 |
dict(
|
271 |
type="buttons",
|
|
|
276 |
args=[
|
277 |
None,
|
278 |
dict(
|
|
|
279 |
frame=dict(duration=100, redraw=False),
|
280 |
mode="immediate",
|
281 |
fromcurrent=True,
|