Spaces:
Running
Running
File size: 13,653 Bytes
5769ee4 2f360f3 5769ee4 2f360f3 5769ee4 2f360f3 5769ee4 9acc98b 5769ee4 9acc98b 5769ee4 9acc98b 5769ee4 9acc98b 5769ee4 9acc98b 5769ee4 9acc98b 5769ee4 9acc98b 5769ee4 9acc98b 5769ee4 9acc98b 5769ee4 9acc98b 5769ee4 0bc5996 5769ee4 0bc5996 5769ee4 9acc98b 2e1acbc 5769ee4 e683d10 5769ee4 e683d10 5769ee4 e683d10 5769ee4 2e1acbc 5769ee4 2e1acbc 5769ee4 2e1acbc 5769ee4 e683d10 5769ee4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
from datasets import load_dataset, Dataset
import fire
from functools import partial, update_wrapper
import numpy
import os
from typing import Dict, Iterable, Tuple
import sys
import time
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
from mmcv import Config
import plotly.graph_objects as go
from torch.utils.data.dataloader import DataLoader
from risk_biased.utils.load_model import get_predictor
from risk_biased.utils.torch_utils import load_weights
from risk_biased.utils.waymo_dataloader import WaymoDataloaders
from risk_biased.predictors.biased_predictor import (
LitTrajectoryPredictor,
)
def to_numpy(**kwargs):
dic_outputs = {}
for k, v in kwargs.items():
dic_outputs[k] = v.detach().cpu().numpy()
return dic_outputs
def get_scatter_data(x, mask_x, name, **kwargs):
return [
go.Scatter(
x=x[k, mask_x[k], 0],
y=x[k, mask_x[k], 1],
showlegend=k == 0,
name=name,
**kwargs,
)
for k in range(x.shape[0])
]
def configuration_paths() -> Iterable[os.PathLike]:
working_dir = os.path.dirname(os.path.realpath(__file__))
return [
os.path.join(
working_dir,
"../../risk_biased/config",
config_file,
)
for config_file in ("learning_config.py", "waymo_config.py")
]
def load_item(index: int, dataset: Dataset, device: str = "cpu") -> Tuple:
x = torch.from_numpy(numpy.array(dataset[index]["x"]).astype(numpy.float32)).to(device)
mask_x = torch.from_numpy(numpy.array(dataset[index]["mask_x"]).astype(numpy.bool_)).to(device)
y = torch.from_numpy(numpy.array(dataset[index]["y"]).astype(numpy.float32)).to(device)
mask_y = torch.from_numpy(numpy.array(dataset[index]["mask_y"]).astype(numpy.bool_)).to(device)
mask_loss = torch.from_numpy( numpy.array(dataset[index]["mask_loss"]).astype(numpy.bool_)).to(device)
map_data = torch.from_numpy(numpy.array(dataset[index]["map_data"]).astype(numpy.float32)).to(device)
mask_map = torch.from_numpy(numpy.array(dataset[index]["mask_map"]).astype(numpy.bool_)).to(device)
offset = torch.from_numpy(numpy.array(dataset[index]["offset"]).astype(numpy.float32)).to(device)
x_ego = torch.from_numpy(numpy.array(dataset[index]["x_ego"]).astype(numpy.float32)).to(device)
y_ego = torch.from_numpy(numpy.array(dataset[index]["y_ego"]).astype(numpy.float32)).to(device)
return (x, mask_x, map_data, mask_map, offset, x_ego, y_ego), y, mask_y, mask_loss
def build_data(
predictor: LitTrajectoryPredictor,
dataset: Dataset,
index: int,
risk_level: float,
n_samples: int,
) -> Dict[str, go.Scatter]:
assert n_samples >= 1
batch, y, mask_y, mask_loss = load_item(index, dataset, predictor.device)
predictions = predictor.predict_step(
batch=batch,
risk_level=risk_level,
n_samples=n_samples,
)
offset = batch[4]
y = predictor._unnormalize_trajectory(y, offset)
x = predictor._unnormalize_trajectory(batch[0], offset)
numpy_data = to_numpy(
predictions=predictions,
y=y,
mask_y=mask_y,
x=x,
mask_x=batch[1],
map_data=batch[2],
mask_map=batch[3],
mask_pred=mask_loss,
)
x = numpy_data["x"][0]
mask_x = numpy_data["mask_x"][0]
y = numpy_data["y"][0]
mask_y = numpy_data["mask_y"][0]
pred = numpy_data["predictions"][0]
mask_pred = numpy_data["mask_pred"][0]
map_data = numpy_data["map_data"][0]
mask_map = numpy_data["mask_map"][0]
marker_size = 12
data_x = get_scatter_data(
x,
mask_x,
mode="lines",
line=dict(width=2, color="black"),
name="Past",
)
ego_present = get_scatter_data(
x=x[0:1, -1:],
mask_x=mask_x[0:1, -1:],
mode="markers",
marker=dict(color="blue", size=marker_size, opacity=0.5),
name="Ego",
)
agent_present = get_scatter_data(
x=x[1:2, -1:],
mask_x=mask_x[1:2, -1:],
mode="markers",
marker=dict(color="green", size=marker_size, opacity=0.5),
name="Agent",
)
data_y = get_scatter_data(
y,
mask_y,
mode="lines",
line=dict(width=2, color="green"),
name="Ground truth",
)
data_map = get_scatter_data(
map_data,
mask_map,
mode="lines",
line=dict(width=15, color="gray"),
opacity=0.3,
name="Centerline",
)
data_pred = []
forecasts_end = []
for i in range(n_samples):
cur_data_pred = get_scatter_data(
pred[:, i],
mask_pred,
mode="lines",
line=dict(width=2, color="red"),
name="Forecast",
)
data_pred += cur_data_pred
forecast_end = get_scatter_data(
pred[:, i, -1:],
mask_pred[:, -1:],
mode="markers",
marker=dict(color="red", size=marker_size/2, opacity=0.5, symbol="x"),
name="Forecast end",
)
forecasts_end += forecast_end
static_data = data_map + data_x + data_y + data_pred + ego_present + agent_present + forecasts_end
animation_opacity = 0.5
frames_x = [
go.Frame(
data=[
go.Scatter(
x=x[mask_x[:, k], k, 0],
y=x[mask_x[:, k], k, 1],
mode="markers",
opacity=animation_opacity,
marker=dict(color="black", size=marker_size),
showlegend=False,
),
go.Scatter(
x=x[0:1, k, 0],
y=x[0:1, k, 1],
mode="markers",
opacity=animation_opacity,
marker=dict(color="blue", size=marker_size),
showlegend=False,
),
]
)
for k in range(x.shape[1])
]
frames_y_pred = []
for k in range(y.shape[1]):
cur_gt_agent_data = go.Scatter(
x=y[1:2][mask_y[1:2, k], k, 0],
y=y[1:2][mask_y[1:2, k], k, 1],
mode="markers",
opacity=animation_opacity,
marker=dict(color="green", size=marker_size),
)
cur_gt_future_data = go.Scatter(
x=y[2:][mask_y[2:, k], k, 0],
y=y[2:][mask_y[2:, k], k, 1],
mode="markers",
opacity=animation_opacity,
marker=dict(color="black", size=marker_size),
)
cur_pred_data = []
for i in range(n_samples):
cur_pred_data.append(
go.Scatter(
x=pred[mask_pred[:, k], i, k, 0],
y=pred[mask_pred[:, k], i, k, 1],
mode="markers",
opacity=animation_opacity,
marker=dict(color="red", size=marker_size),
showlegend=False,
)
)
cur_ego_data = go.Scatter(
x=y[0:1, k, 0],
y=y[0:1, k, 1],
mode="markers",
opacity=animation_opacity,
marker=dict(color="blue", size=marker_size),
)
cur_data = [cur_gt_agent_data, cur_gt_future_data, *cur_pred_data, cur_ego_data]
frame = go.Frame(data=cur_data)
frames_y_pred.append(frame)
return {"frames": frames_x + frames_y_pred, "data": static_data}
def prediction_plot(
predictor: LitTrajectoryPredictor,
dataset: Dataset,
index: int,
risk_level: float,
n_samples: int = 1,
use_biaser: bool = True,
) -> go.Figure:
range_radius = 80
if use_biaser:
risk_level = float(risk_level)
else:
risk_level = None
layout = go.Layout(
xaxis=dict(
range=[-0.5*range_radius, 1.5*range_radius],
autorange=False,
zeroline=False,
),
yaxis=dict(
range=[-range_radius, range_radius],
autorange=False,
zeroline=False,
),
title_text="Road Scene",
hovermode="closest",
width=800,
height=600,
updatemenus=[
dict(
type="buttons",
buttons=[
dict(
label="Play",
method="animate",
args=[
None,
dict(
frame=dict(duration=100, redraw=False),
mode="immediate",
fromcurrent=True,
),
],
),
dict(
label="Pause",
method="animate",
args=[[None], {"frame": {"duration": 0, "redraw": False},
"mode": "immediate",
"transition": {"duration": 0}}],
)
],
)
],
)
fig = go.Figure(
**build_data(predictor, dataset, index, risk_level, n_samples),
layout=layout,
)
fig.update_geos(projection_type="equirectangular", visible=True, resolution=110)
return fig
def get_figure(
predictor: LitTrajectoryPredictor,
dataset: Dataset,
index: int,
risk_level: float,
n_samples: int,
) -> go.Figure:
fig = prediction_plot(
predictor, dataset, index, risk_level, n_samples, use_biaser=True
)
fig.update_layout()
return fig
def update_figure(
predictor: LitTrajectoryPredictor,
dataset: Dataset,
index: int,
risk_level: float,
n_samples: int,
image = None
) -> go.Figure:
fig = prediction_plot(
predictor, dataset, index, risk_level, n_samples, use_biaser=True
)
fig.update_layout()
return fig
def load_predictor_from_hf(model_source: str = "TRI-ML/risk_biased_model", config_name: str="learning_config.py", checkpoint_name: str = "last.ckpt", device: str = "cpu") -> Tuple[LitTrajectoryPredictor, Dataset]:
config_file = hf_hub_download(model_source, filename=config_name, use_auth_token=os.getenv('SECRET_AUTH_TOKEN'))
ckpt = torch.load(hf_hub_download(model_source, filename=checkpoint_name, use_auth_token=os.getenv('SECRET_AUTH_TOKEN')), map_location="cpu")
cfg = Config.fromfile(config_file)
predictor = get_predictor(cfg, WaymoDataloaders.unnormalize_trajectory)
predictor = load_weights(predictor, ckpt)
predictor.eval()
predictor = predictor.to(device)
return predictor
def load_dataset_from_hf(data_source: str = "jmercat/risk_biased_dataset") -> Dataset:
dataset = load_dataset(data_source, split="test")
return dataset
def main(load_from=None, cfg_path=None):
# Define the device to use
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Getting dataset")
dataset = load_dataset_from_hf()
if load_from is not None:
cfg = Config.fromfile(cfg_path)
predictor = get_predictor(cfg, WaymoDataloaders.unnormalize_trajectory)
predictor = load_weights(predictor, torch.load(load_from, map_location="cpu"))
else:
print("Getting model.")
predictor = load_predictor_from_hf(device=device)
ui_update_fn = partial(update_figure, predictor, dataset)
# Do the same thing as above but using the gradio blocks API
with gr.Blocks() as interface:
gr.Markdown(
"""
# Risk-Aware Prediction
Make predictions for the green agent with a risk-seeking bias towards the ego vehicle in blue.
The risk level is a value between 0 and 1, where 0 is not risk-seeking and 1 is the most risk-seeking.
Once the sliders are set, click the "Run" button to see the predictions.
The play button will animate the prediction over time (it is slow especially with many samples).
For more information, see the paper [RAP: Risk-Aware Prediction for Robust Planning](https://arxiv.org/abs/2210.01368) published at [CoRL 2022](https://corl2022.org/).
""")
initial_index = 27
initial_n_samples = 10
image = gr.Plot(get_figure(predictor, dataset, initial_index, 0, initial_n_samples))
interface.queue()
index = gr.Slider(
minimum=0,
maximum=len(dataset)-1,
step=1,
value=initial_index,
label="Index",
)
risk_level = gr.Slider(minimum=0, maximum=1, step=0.01, label="Risk")
n_samples = gr.Slider(minimum=1, maximum=20, step=1, value=initial_n_samples, label="Number of prediction samples")
button = gr.Button(label="Run")
# Removed the interactive plot because it was running on the first change and all changes made during computation were ignored
# This caused the plot to be out of sync with the sliders
# index.change(ui_update_fn, inputs=[index, risk_level, n_samples, image], outputs=image)
# risk_level.change(ui_update_fn, inputs=[index, risk_level, n_samples, image], outputs=image)
# n_samples.change(ui_update_fn, inputs=[index, risk_level, n_samples, image], outputs=image)
button.click(ui_update_fn, inputs=[index, risk_level, n_samples, image], outputs=image)
interface.launch(debug=False)
if __name__ == "__main__":
fire.Fire(main)
|