TKgumi commited on
Commit
037dd6e
·
verified ·
1 Parent(s): 9e1bf97

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -46
app.py CHANGED
@@ -1,52 +1,20 @@
1
- import os
2
- import numpy as np
3
- import cv2
4
- import pytesseract
5
- from pdf2image import convert_from_path
6
- from fastapi import FastAPI, UploadFile, File
7
- from transformers import AutoTokenizer, AutoModelForCausalLM
8
 
9
- app = FastAPI()
10
 
11
- # Hugging Face LLMの設定
12
- MODEL_NAME = "deepseek-ai/deepseek-coder-1.3b"
13
- tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
14
- model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
15
 
16
- # OCR関数(決算短信PDF -> テキスト変換)
17
- def extract_text_from_pdf(pdf_path: str) -> str:
18
- images = convert_from_path(pdf_path)
19
- extracted_text = ""
20
 
21
- for image in images:
22
- img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
23
- gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)
24
- thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
25
- text = pytesseract.image_to_string(thresh, lang="jpn")
26
- extracted_text += text + "\n"
27
 
28
- return extracted_text
 
 
29
 
30
- # LLM要約関数(決算短信のOCRテキスト -> 投資家向け要約)
31
- def summarize_text(text: str) -> str:
32
- prompt = f"以下の決算短信を投資家向けに要約してください:\n{text}"
33
- inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096)
34
- output_ids = model.generate(inputs.input_ids, max_length=512, num_beams=5, early_stopping=True)
35
- return tokenizer.decode(output_ids[0], skip_special_tokens=True)
36
-
37
- # FastAPIエンドポイント(ファイルアップロード & OCR処理 & LLM要約)
38
- @app.post("/upload/")
39
- async def upload_pdf(file: UploadFile = File(...)):
40
- file_path = f"/tmp/{file.filename}"
41
-
42
- # ファイルを保存
43
- with open(file_path, "wb") as f:
44
- f.write(await file.read())
45
-
46
- # OCRでテキスト抽出
47
- extracted_text = extract_text_from_pdf(file_path)
48
-
49
- # LLMで要約
50
- summary = summarize_text(extracted_text)
51
-
52
- return {"summary": summary}
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
+ import torch
 
 
 
 
 
3
 
4
+ model_name = "EQUES/TinyDeepSeek-1.5B"
5
 
6
+ # トークナイザーのロード
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
 
 
8
 
9
+ # モデルのロード(無償プランのメモリ制限を考慮してCPUにロード)
10
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
 
 
11
 
12
+ # テスト用の入力
13
+ input_text = "Explain large language models in simple terms."
14
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids
 
 
 
15
 
16
+ # 推論実行
17
+ output = model.generate(input_ids, max_length=100)
18
+ generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
19
 
20
+ print(generated_text)