Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,20 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import cv2
|
4 |
-
import pytesseract
|
5 |
-
from pdf2image import convert_from_path
|
6 |
-
from fastapi import FastAPI, UploadFile, File
|
7 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
|
9 |
-
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
14 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
images = convert_from_path(pdf_path)
|
19 |
-
extracted_text = ""
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
|
25 |
-
text = pytesseract.image_to_string(thresh, lang="jpn")
|
26 |
-
extracted_text += text + "\n"
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
def summarize_text(text: str) -> str:
|
32 |
-
prompt = f"以下の決算短信を投資家向けに要約してください:\n{text}"
|
33 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096)
|
34 |
-
output_ids = model.generate(inputs.input_ids, max_length=512, num_beams=5, early_stopping=True)
|
35 |
-
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
36 |
-
|
37 |
-
# FastAPIエンドポイント(ファイルアップロード & OCR処理 & LLM要約)
|
38 |
-
@app.post("/upload/")
|
39 |
-
async def upload_pdf(file: UploadFile = File(...)):
|
40 |
-
file_path = f"/tmp/{file.filename}"
|
41 |
-
|
42 |
-
# ファイルを保存
|
43 |
-
with open(file_path, "wb") as f:
|
44 |
-
f.write(await file.read())
|
45 |
-
|
46 |
-
# OCRでテキスト抽出
|
47 |
-
extracted_text = extract_text_from_pdf(file_path)
|
48 |
-
|
49 |
-
# LLMで要約
|
50 |
-
summary = summarize_text(extracted_text)
|
51 |
-
|
52 |
-
return {"summary": summary}
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
model_name = "EQUES/TinyDeepSeek-1.5B"
|
5 |
|
6 |
+
# トークナイザーのロード
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
8 |
|
9 |
+
# モデルのロード(無償プランのメモリ制限を考慮してCPUにロード)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
|
|
|
|
11 |
|
12 |
+
# テスト用の入力
|
13 |
+
input_text = "Explain large language models in simple terms."
|
14 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
|
|
|
|
|
|
15 |
|
16 |
+
# 推論実行
|
17 |
+
output = model.generate(input_ids, max_length=100)
|
18 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
19 |
|
20 |
+
print(generated_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|