File size: 17,920 Bytes
c21de19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfcd3d5
c21de19
 
 
 
 
 
 
 
 
 
 
 
 
 
677200d
c21de19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8daa403
c21de19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfcd3d5
 
 
 
c21de19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
677200d
c21de19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
521cfb4
c21de19
 
 
8daa403
c21de19
 
 
 
 
 
 
 
 
 
 
 
 
 
a0109d1
b7b9e3c
c21de19
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

import cv2
import torch
from PIL import Image, ImageOps
import numpy as np
import gradio as gr
import math
import os
import zipfile
import trimesh
import pygltflib
from scipy.ndimage import median_filter
import requests # Import requests for downloading


# Depth-Anything V2 model setup
from depth_anything_v2.dpt import DepthAnythingV2

DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'

model_configs = {
    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
    'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
    'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}

encoder = 'vitl' # or 'vits', 'vitb', 'vitg'

model = DepthAnythingV2(**model_configs[encoder])

# Define model directory and path
MODEL_DIR = "models"
os.makedirs(MODEL_DIR, exist_ok=True)
model_filename = f'depth_anything_v2_{encoder}.pth'
model_path = os.path.join(MODEL_DIR, model_filename)

# Add code to download model weights if not exists
if not os.path.exists(model_path):
    print(f"Downloading {model_path}...")
    url = f"https://huggingface.co/depth-anything/Depth-Anything-V2-Large/resolve/main/{model_filename}"
    response = requests.get(url, stream=True)
    with open(model_path, "wb") as f:
        for chunk in response.iter_content(chunk_size=8192):
            f.write(chunk)
    print("Download complete.")

model.load_state_dict(torch.load(model_path, map_location='cpu'))
model = model.to(DEVICE).eval()

# Helper functions (from your notebook)
def quaternion_multiply(q1, q2):
    x1, y1, z1, w1 = q1
    x2, y2, z2, w2 = q2
    return [
        w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2,
        w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2,
        w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2,
        w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2,
    ]


def glb_add_lights(path_input, path_output):
    """
    Adds directional lights in the horizontal plane to the glb file.
    :param path_input: path to input glb
    :param path_output: path to output glb
    :return: None
    """
    glb = pygltflib.GLTF2().load(path_input)

    N = 3  # default max num lights in Babylon.js is 4
    angle_step = 2 * math.pi / N
    elevation_angle = math.radians(75)

    light_colors = [
        [1.0, 0.0, 0.0],
        [0.0, 1.0, 0.0],
        [0.0, 0.0, 1.0],
    ]

    lights_extension = {
        "lights": [
            {"type": "directional", "color": light_colors[i], "intensity": 2.0}
            for i in range(N)
        ]
    }

    if "KHR_lights_punctual" not in glb.extensionsUsed:
        glb.extensionsUsed.append("KHR_lights_punctual")
    glb.extensions["KHR_lights_punctual"] = lights_extension

    light_nodes = []
    for i in range(N):
        angle = i * angle_step

        pos_rot = [0.0, 0.0, math.sin(angle / 2), math.cos(angle / 2)]
        elev_rot = [
            math.sin(elevation_angle / 2),
            0.0,
            0.0,
            math.cos(elevation_angle / 2),
        ]
        rotation = quaternion_multiply(pos_rot, elev_rot)

        node = {
            "rotation": rotation,
            "extensions": {"KHR_lights_punctual": {"light": i}},
        }
        light_nodes.append(node)

    light_node_indices = list(range(len(glb.nodes), len(glb.nodes) + N))
    glb.nodes.extend(light_nodes)

    root_node_index = glb.scenes[glb.scene].nodes[0]
    root_node = glb.nodes[root_node_index]
    if hasattr(root_node, "children"):
        root_node.children.extend(light_node_indices)
    else:
        root_node.children = light_node_indices

    glb.save(path_output)


def extrude_depth_3d(
    path_rgb,
    path_depth,
    path_out_base=None,
    alpha=1.0,
    invert=0,
    output_model_scale=100,
    filter_size=3,
    coef_near=0.0,
    coef_far=1.0,
    emboss=0.3,
    f_thic=0.05,
    f_near=-0.15,
    f_back=0.01,
    vertex_colors=True,
    scene_lights=True,
    prepare_for_3d_printing=False,
    zip_outputs=False,
    lift_height=0.0
):
    f_far_inner = -emboss
    f_far_outer = f_far_inner - f_back

    f_near = max(f_near, f_far_inner)

    depth_image = Image.open(path_depth)
    mono_image = Image.open(path_rgb).convert("L")

    if invert==1:
        mono_image = ImageOps.invert(mono_image)

    w, h = depth_image.size
    d_max = max(w, h)
    depth_image = np.array(depth_image).astype(np.double)
    mono_image = np.array(mono_image).astype(np.double)
    z_min, z_max = np.min(depth_image), np.max(depth_image)
    m_min, m_max = np.min(mono_image), np.max(mono_image)
    depth_image = (depth_image.astype(np.double) - z_min) / (z_max - z_min)
    depth_image[depth_image < coef_near] = coef_near
    depth_image[depth_image > coef_far] = coef_far
    z_min, z_max = np.min(depth_image), np.max(depth_image)
    depth_image = (depth_image - z_min) / (z_max - z_min)
    mono_image = median_filter(mono_image, size=5)
    mono_image = (mono_image.astype(np.double) - m_min) / (m_max - m_min)
    mono_image_new = np.where(depth_image == coef_far, 1, mono_image)
    m_min=np.min(mono_image_new)
    mono_image_new = np.where(depth_image == coef_far, 0, mono_image)
    m_max=np.max(mono_image_new)
    mono_image = np.where(depth_image == coef_far, m_min, mono_image)
    mono_image = (mono_image - m_min) / (m_max - m_min)
    depth_image = np.where(depth_image != 1.0, (1-alpha) * depth_image + alpha * mono_image, depth_image)
    #depth_image_new[depth_image < coef_near] = 0
    #depth_image_new[depth_image > coef_far] = 1
    #depth_image_new[depth_image_new < 0] = 0
    depth_image = median_filter(depth_image, size=filter_size)
    depth_image = emboss*(depth_image - np.min(depth_image)) / (np.max(depth_image) - np.min(depth_image))
    depth_image = np.where(depth_image != emboss, depth_image + lift_height, depth_image)
    Image.fromarray((depth_image * 255).astype(np.uint8)).convert("L").save(path_out_base+".png")
    rgb_image = np.array(
        Image.open(path_rgb).convert("RGB").resize((w, h), Image.Resampling.LANCZOS)
    )

    w_norm = w / float(d_max - 1)
    h_norm = h / float(d_max - 1)
    w_half = w_norm / 2
    h_half = h_norm / 2

    x, y = np.meshgrid(np.arange(w), np.arange(h))
    x = x / float(d_max - 1) - w_half  # [-w_half, w_half]
    y = -y / float(d_max - 1) + h_half  # [-h_half, h_half]
    z = -depth_image  # -depth_emboss (far) - 0 (near)
    vertices_2d = np.stack((x, y, z), axis=-1)
    vertices = vertices_2d.reshape(-1, 3)
    colors = rgb_image[:, :, :3].reshape(-1, 3) / 255.0

    faces = []
    for y in range(h - 1):
        for x in range(w - 1):
            idx = y * w + x
            faces.append([idx, idx + w, idx + 1])
            faces.append([idx + 1, idx + w, idx + 1 + w])

    # OUTER frame

    nv = len(vertices)
    vertices = np.append(
        vertices,
        [
            [-w_half - f_thic, -h_half - f_thic, f_near],  # 00
            [-w_half - f_thic, -h_half - f_thic, f_far_outer],  # 01
            [w_half + f_thic, -h_half - f_thic, f_near],  # 02
            [w_half + f_thic, -h_half - f_thic, f_far_outer],  # 03
            [w_half + f_thic, h_half + f_thic, f_near],  # 04
            [w_half + f_thic, h_half + f_thic, f_far_outer],  # 05
            [-w_half - f_thic, h_half + f_thic, f_near],  # 06
            [-w_half - f_thic, h_half + f_thic, f_far_outer],  # 07
        ],
        axis=0,
    )
    faces.extend(
        [
            [nv + 0, nv + 1, nv + 2],
            [nv + 2, nv + 1, nv + 3],
            [nv + 2, nv + 3, nv + 4],
            [nv + 4, nv + 3, nv + 5],
            [nv + 4, nv + 5, nv + 6],
            [nv + 6, nv + 5, nv + 7],
            [nv + 6, nv + 7, nv + 0],
            [nv + 0, nv + 7, nv + 1],
        ]
    )
    colors = np.append(colors, [[0.5, 0.5, 0.5]] * 8, axis=0)

    # INNER frame

    nv = len(vertices)
    vertices_left_data = vertices_2d[:, 0]  # H x 3
    vertices_left_frame = vertices_2d[:, 0].copy()  # H x 3
    vertices_left_frame[:, 2] = f_near
    vertices = np.append(vertices, vertices_left_data, axis=0)
    vertices = np.append(vertices, vertices_left_frame, axis=0)
    colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * h), axis=0)
    for i in range(h - 1):
        nvi_d = nv + i
        nvi_f = nvi_d + h
        faces.append([nvi_d, nvi_f, nvi_d + 1])
        faces.append([nvi_d + 1, nvi_f, nvi_f + 1])

    nv = len(vertices)
    vertices_right_data = vertices_2d[:, -1]  # H x 3
    vertices_right_frame = vertices_2d[:, -1].copy()  # H x 3
    vertices_right_frame[:, 2] = f_near
    vertices = np.append(vertices, vertices_right_data, axis=0)
    vertices = np.append(vertices, vertices_right_frame, axis=0)
    colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * h), axis=0)
    for i in range(h - 1):
        nvi_d = nv + i
        nvi_f = nvi_d + h
        faces.append([nvi_d, nvi_d + 1, nvi_f])
        faces.append([nvi_d + 1, nvi_f + 1, nvi_f])

    nv = len(vertices)
    vertices_top_data = vertices_2d[0, :]  # H x 3
    vertices_top_frame = vertices_2d[0, :].copy()  # H x 3
    vertices_top_frame[:, 2] = f_near
    vertices = np.append(vertices, vertices_top_data, axis=0)
    vertices = np.append(vertices, vertices_top_frame, axis=0)
    colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * w), axis=0)
    for i in range(w - 1):
        nvi_d = nv + i
        nvi_f = nvi_d + w
        faces.append([nvi_d, nvi_d + 1, nvi_f])
        faces.append([nvi_d + 1, nvi_f + 1, nvi_f])

    nv = len(vertices)
    vertices_bottom_data = vertices_2d[-1, :]  # H x 3
    vertices_bottom_frame = vertices_2d[-1, :].copy()  # H x 3
    vertices_bottom_frame[:, 2] = f_near
    vertices = np.append(vertices, vertices_bottom_data, axis=0)
    vertices = np.append(vertices, vertices_bottom_frame, axis=0)
    colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * w), axis=0)
    for i in range(w - 1):
        nvi_d = nv + i
        nvi_f = nvi_d + w
        faces.append([nvi_d, nvi_f, nvi_d + 1])
        faces.append([nvi_d + 1, nvi_f, nvi_f + 1])

    # FRONT frame

    nv = len(vertices)
    vertices = np.append(
        vertices,
        [
            [-w_half - f_thic, -h_half - f_thic, f_near],
            [-w_half - f_thic, h_half + f_thic, f_near],
        ],
        axis=0,
    )
    vertices = np.append(vertices, vertices_left_frame, axis=0)
    colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + h), axis=0)
    for i in range(h - 1):
        faces.append([nv, nv + 2 + i + 1, nv + 2 + i])
    faces.append([nv, nv + 2, nv + 1])

    nv = len(vertices)
    vertices = np.append(
        vertices,
        [
            [w_half + f_thic, h_half + f_thic, f_near],
            [w_half + f_thic, -h_half - f_thic, f_near],
        ],
        axis=0,
    )
    vertices = np.append(vertices, vertices_right_frame, axis=0)
    colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + h), axis=0)
    for i in range(h - 1):
        faces.append([nv, nv + 2 + i, nv + 2 + i + 1])
    faces.append([nv, nv + h + 1, nv + 1])

    nv = len(vertices)
    vertices = np.append(
        vertices,
        [
            [w_half + f_thic, h_half + f_thic, f_near],
            [-w_half - f_thic, h_half + f_thic, f_near],
        ],
        axis=0,
    )
    vertices = np.append(vertices, vertices_top_frame, axis=0)
    colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + w), axis=0)
    for i in range(w - 1):
        faces.append([nv, nv + 2 + i, nv + 2 + i + 1])
    faces.append([nv, nv + 1, nv + 2])

    nv = len(vertices)
    vertices = np.append(
        vertices,
        [
            [-w_half - f_thic, -h_half - f_thic, f_near],
            [w_half + f_thic, -h_half - f_thic, f_near],
        ],
        axis=0,
    )
    vertices = np.append(vertices, vertices_bottom_frame, axis=0)
    colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + w), axis=0)
    for i in range(w - 1):
        faces.append([nv, nv + 2 + i + 1, nv + 2 + i])
    faces.append([nv, nv + 1, nv + w + 1])

    # BACK frame

    nv = len(vertices)
    vertices = np.append(
        vertices,
        [
            [-w_half - f_thic, -h_half - f_thic, f_far_outer],  # 00
            [w_half + f_thic, -h_half - f_thic, f_far_outer],  # 01
            [w_half + f_thic, h_half + f_thic, f_far_outer],  # 02
            [-w_half - f_thic, h_half + f_thic, f_far_outer],  # 03
        ],
        axis=0,
    )
    faces.extend(
        [
            [nv + 0, nv + 2, nv + 1],
            [nv + 2, nv + 0, nv + 3],
        ]
    )
    colors = np.append(colors, [[0.5, 0.5, 0.5]] * 4, axis=0)

    trimesh_kwargs = {}
    if vertex_colors:
        trimesh_kwargs["vertex_colors"] = colors
    mesh = trimesh.Trimesh(vertices=vertices, faces=faces, **trimesh_kwargs)

    mesh.merge_vertices()

    current_max_dimension = max(mesh.extents)
    scaling_factor = output_model_scale / current_max_dimension
    mesh.apply_scale(scaling_factor)

    if prepare_for_3d_printing:
        rotation_mat = trimesh.transformations.rotation_matrix(
            np.radians(0), [0.5, 0, 0]
        )
        mesh.apply_transform(rotation_mat)

    if path_out_base is None:
        path_out_base = os.path.splitext(path_depth)[0].replace("_16bit", "")
    path_out_glb = path_out_base + ".glb"
    path_out_stl = path_out_base + ".stl"
    path_out_obj = path_out_base + ".obj"

    mesh.export(path_out_stl, file_type="stl")
    """
    mesh.export(path_out_glb, file_type="glb")
    if scene_lights:
        glb_add_lights(path_out_glb, path_out_glb)
    mesh.export(path_out_obj, file_type="obj")

    if zip_outputs:
        with zipfile.ZipFile(path_out_glb + ".zip", "w", zipfile.ZIP_DEFLATED) as zipf:
            arcname = os.path.basename(os.path.splitext(path_out_glb)[0]) + ".glb"
            zipf.write(path_out_glb, arcname=arcname)
            path_out_glb = path_out_glb + ".zip"
        with zipfile.ZipFile(path_out_stl + ".zip", "w", zipfile.ZIP_DEFLATED) as zipf:
            arcname = os.path.basename(os.path.splitext(path_out_stl)[0]) + ".stl"
            zipf.write(path_out_stl, arcname=arcname)
            path_out_stl = path_out_stl + ".zip"
        with zipfile.ZipFile(path_out_obj + ".zip", "w", zipfile.ZIP_DEFLATED) as zipf:
            arcname = os.path.basename(os.path.splitext(path_out_obj)[0]) + ".obj"
            zipf.write(path_out_obj, arcname=arcname)
            path_out_obj = path_out_obj + ".zip"
    """
    return path_out_glb, path_out_stl, path_out_obj

def scale_to_width(img, length):
      if img.width < img.height:
        width = length
        height = round(img.height * length / img.width)
      else:
        width = round(img.width * length / img.height)
        height = length
      return (width,height)


# Gradio Interface function
def process_image_and_generate_stl(image_input, depth_near, depth_far, thickness, alpha, backsheet, lift):
    # Depth Estimation
    raw_img = cv2.imread(image_input)
    depth = model.infer_image(raw_img) # HxW raw depth map in numpy

    # Save depth map temporarily
    depth_output_path = "output_depth.png"
    cv2.imwrite(depth_output_path, depth)

    # Prepare images for 3D model generation
    img_rgb = image_input
    img_depth = depth_output_path
    inv = 0 # Assuming no inversion for now, based on previous code
    # Image.open(img_rgb).convert("L").save("example_1_black.png") # This line might not be necessary for the final output
    size = scale_to_width(Image.open(img_rgb), 512)
    Image.open(img_rgb).resize(size, Image.Resampling.LANCZOS).save("one.png") # Use Resampling.LANCZOS
    if inv == 1:
        Image.open(img_depth).convert(mode="F").resize(size, Image.Resampling.BILINEAR).convert("I").save("two.png") # Use Resampling.BILINEAR
    else:
        img=Image.open(img_depth).convert(mode="F").resize(size, Image.Resampling.BILINEAR).convert("I") # Use Resampling.BILINEAR
        img = np.array(img).astype(np.double)
        im_max=np.max(img)
        im_min=np.min(img)
        img=(1-(img-im_min)/(im_max-im_min))*im_max
        img=Image.fromarray(img)
        img.convert("I").save("two.png")


    # 3D Model Generation
    output_path_base = "generated_relief"
    glb_path, stl_path, obj_path = extrude_depth_3d(
        "one.png",
        "two.png",
        alpha=alpha,
        invert=inv,
        path_out_base=output_path_base,
        output_model_scale=100,
        filter_size=5, # Using 5 based on previous code
        coef_near=depth_near,
        coef_far=depth_far,
        emboss=thickness,
        f_thic=0.0, # Using 0.0 based on previous code
        f_near=-thickness, # Using -thickness based on previous code
        f_back=backsheet, # Using 0.01 based on previous code
        vertex_colors=True,
        scene_lights=True,
        prepare_for_3d_printing=True,
        lift_height=-lift
    )

    return stl_path # Return the path to the generated STL file


# Gradio Interface definition
iface = gr.Interface(
    fn=process_image_and_generate_stl,
    inputs=[
        gr.Image(type="filepath", label="Upload Image"),
        gr.Slider(minimum=0, maximum=1.0, value=0, label="Depth Near"),
        gr.Slider(minimum=0, maximum=1.0, value=1.0, label="Depth Far"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.3, label="Thickness"),
        gr.Slider(minimum=0, maximum=1.0, value=0.05, label="Alpha"),
        gr.Slider(minimum=0.01, maximum=0.1, value=0.01, label="BackSheet Thickness"),
        gr.Slider(minimum=0, maximum=0.1, value=0.0, label="lift"),
    ],
    outputs=gr.File(label="Download STL File"), # Use gr.File() for file downloads
    title="Image to 2.5D Relief Model Generator",
    description="Upload an image, set parameters, and generate a 2.5D relief model (.stl file)."
)

# Launch the interface (for local testing)
if __name__ == "__main__":
    iface.launch(debug=True)