Spaces:
Running
Running
upload
Browse files
app.py
ADDED
@@ -0,0 +1,498 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
from PIL import Image, ImageOps
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
import math
|
8 |
+
import os
|
9 |
+
import zipfile
|
10 |
+
import trimesh
|
11 |
+
import pygltflib
|
12 |
+
from scipy.ndimage import median_filter
|
13 |
+
import requests # Import requests for downloading
|
14 |
+
|
15 |
+
|
16 |
+
# Depth-Anything V2 model setup
|
17 |
+
from depth_anything_v2.dpt import DepthAnythingV2
|
18 |
+
|
19 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
|
20 |
+
|
21 |
+
model_configs = {
|
22 |
+
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
|
23 |
+
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
|
24 |
+
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
25 |
+
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
|
26 |
+
}
|
27 |
+
|
28 |
+
encoder = 'vitl' # or 'vits', 'vitb', 'vitg'
|
29 |
+
|
30 |
+
model = DepthAnythingV2(**model_configs[encoder])
|
31 |
+
|
32 |
+
# Define model directory and path
|
33 |
+
MODEL_DIR = "models"
|
34 |
+
os.makedirs(MODEL_DIR, exist_ok=True)
|
35 |
+
model_filename = f'depth_anything_v2_{encoder}.pth'
|
36 |
+
model_path = os.path.join(MODEL_DIR, model_filename)
|
37 |
+
|
38 |
+
# Add code to download model weights if not exists
|
39 |
+
if not os.path.exists(model_path):
|
40 |
+
print(f"Downloading {model_path}...")
|
41 |
+
url = f"https://huggingface.co/depth-anything/Depth-Anything-V2-Large/resolve/main/{model_filename}"
|
42 |
+
response = requests.get(url, stream=True)
|
43 |
+
with open(model_path, "wb") as f:
|
44 |
+
for chunk in response.iter_content(chunk_size=8192):
|
45 |
+
f.write(chunk)
|
46 |
+
print("Download complete.")
|
47 |
+
|
48 |
+
model.load_state_dict(torch.load(model_path, map_location='cpu'))
|
49 |
+
model = model.to(DEVICE).eval()
|
50 |
+
|
51 |
+
# Helper functions (from your notebook)
|
52 |
+
def quaternion_multiply(q1, q2):
|
53 |
+
x1, y1, z1, w1 = q1
|
54 |
+
x2, y2, z2, w2 = q2
|
55 |
+
return [
|
56 |
+
w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2,
|
57 |
+
w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2,
|
58 |
+
w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2,
|
59 |
+
w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2,
|
60 |
+
]
|
61 |
+
|
62 |
+
|
63 |
+
def glb_add_lights(path_input, path_output):
|
64 |
+
"""
|
65 |
+
Adds directional lights in the horizontal plane to the glb file.
|
66 |
+
:param path_input: path to input glb
|
67 |
+
:param path_output: path to output glb
|
68 |
+
:return: None
|
69 |
+
"""
|
70 |
+
glb = pygltflib.GLTF2().load(path_input)
|
71 |
+
|
72 |
+
N = 3 # default max num lights in Babylon.js is 4
|
73 |
+
angle_step = 2 * math.pi / N
|
74 |
+
elevation_angle = math.radians(75)
|
75 |
+
|
76 |
+
light_colors = [
|
77 |
+
[1.0, 0.0, 0.0],
|
78 |
+
[0.0, 1.0, 0.0],
|
79 |
+
[0.0, 0.0, 1.0],
|
80 |
+
]
|
81 |
+
|
82 |
+
lights_extension = {
|
83 |
+
"lights": [
|
84 |
+
{"type": "directional", "color": light_colors[i], "intensity": 2.0}
|
85 |
+
for i in range(N)
|
86 |
+
]
|
87 |
+
}
|
88 |
+
|
89 |
+
if "KHR_lights_punctual" not in glb.extensionsUsed:
|
90 |
+
glb.extensionsUsed.append("KHR_lights_punctual")
|
91 |
+
glb.extensions["KHR_lights_punctual"] = lights_extension
|
92 |
+
|
93 |
+
light_nodes = []
|
94 |
+
for i in range(N):
|
95 |
+
angle = i * angle_step
|
96 |
+
|
97 |
+
pos_rot = [0.0, 0.0, math.sin(angle / 2), math.cos(angle / 2)]
|
98 |
+
elev_rot = [
|
99 |
+
math.sin(elevation_angle / 2),
|
100 |
+
0.0,
|
101 |
+
0.0,
|
102 |
+
math.cos(elevation_angle / 2),
|
103 |
+
]
|
104 |
+
rotation = quaternion_multiply(pos_rot, elev_rot)
|
105 |
+
|
106 |
+
node = {
|
107 |
+
"rotation": rotation,
|
108 |
+
"extensions": {"KHR_lights_punctual": {"light": i}},
|
109 |
+
}
|
110 |
+
light_nodes.append(node)
|
111 |
+
|
112 |
+
light_node_indices = list(range(len(glb.nodes), len(glb.nodes) + N))
|
113 |
+
glb.nodes.extend(light_nodes)
|
114 |
+
|
115 |
+
root_node_index = glb.scenes[glb.scene].nodes[0]
|
116 |
+
root_node = glb.nodes[root_node_index]
|
117 |
+
if hasattr(root_node, "children"):
|
118 |
+
root_node.children.extend(light_node_indices)
|
119 |
+
else:
|
120 |
+
root_node.children = light_node_indices
|
121 |
+
|
122 |
+
glb.save(path_output)
|
123 |
+
|
124 |
+
|
125 |
+
def extrude_depth_3d(
|
126 |
+
path_rgb,
|
127 |
+
path_depth,
|
128 |
+
path_out_base="../",
|
129 |
+
alpha=1.0,
|
130 |
+
invert=0,
|
131 |
+
output_model_scale=100,
|
132 |
+
filter_size=3,
|
133 |
+
coef_near=0.0,
|
134 |
+
coef_far=1.0,
|
135 |
+
emboss=0.3,
|
136 |
+
f_thic=0.05,
|
137 |
+
f_near=-0.15,
|
138 |
+
f_back=0.01,
|
139 |
+
vertex_colors=True,
|
140 |
+
scene_lights=True,
|
141 |
+
prepare_for_3d_printing=False,
|
142 |
+
zip_outputs=False,
|
143 |
+
):
|
144 |
+
f_far_inner = -emboss
|
145 |
+
f_far_outer = f_far_inner - f_back
|
146 |
+
|
147 |
+
f_near = max(f_near, f_far_inner)
|
148 |
+
|
149 |
+
depth_image = Image.open(path_depth)
|
150 |
+
mono_image = Image.open(path_rgb).convert("L")
|
151 |
+
|
152 |
+
if invert==1:
|
153 |
+
mono_image = ImageOps.invert(mono_image)
|
154 |
+
|
155 |
+
w, h = depth_image.size
|
156 |
+
d_max = max(w, h)
|
157 |
+
depth_image = np.array(depth_image).astype(np.double)
|
158 |
+
mono_image = np.array(mono_image).astype(np.double)
|
159 |
+
z_min, z_max = np.min(depth_image), np.max(depth_image)
|
160 |
+
m_min, m_max = np.min(mono_image), np.max(mono_image)
|
161 |
+
depth_image = (depth_image.astype(np.double) - z_min) / (z_max - z_min)
|
162 |
+
depth_image[depth_image < coef_near] = coef_near
|
163 |
+
depth_image[depth_image > coef_far] = coef_far
|
164 |
+
z_min, z_max = np.min(depth_image), np.max(depth_image)
|
165 |
+
depth_image = (depth_image - z_min) / (z_max - z_min)
|
166 |
+
mono_image = median_filter(mono_image, size=5)
|
167 |
+
mono_image = (mono_image.astype(np.double) - m_min) / (m_max - m_min)
|
168 |
+
mono_image_new = np.where(depth_image == coef_far, 1, mono_image)
|
169 |
+
m_min=np.min(mono_image_new)
|
170 |
+
mono_image_new = np.where(depth_image == coef_far, 0, mono_image)
|
171 |
+
m_max=np.max(mono_image_new)
|
172 |
+
mono_image = np.where(depth_image == coef_far, m_min, mono_image)
|
173 |
+
mono_image = (mono_image - m_min) / (m_max - m_min)
|
174 |
+
depth_image = np.where(depth_image != 1.0, (1-alpha) * depth_image + alpha * mono_image, depth_image)
|
175 |
+
#depth_image_new[depth_image < coef_near] = 0
|
176 |
+
#depth_image_new[depth_image > coef_far] = 1
|
177 |
+
#depth_image_new[depth_image_new < 0] = 0
|
178 |
+
depth_image = median_filter(depth_image, size=filter_size)
|
179 |
+
depth_image = emboss*(depth_image - np.min(depth_image)) / (np.max(depth_image) - np.min(depth_image))
|
180 |
+
Image.fromarray((depth_image * 255).astype(np.uint8)).convert("L").save(path_out_base+".png")
|
181 |
+
rgb_image = np.array(
|
182 |
+
Image.open(path_rgb).convert("RGB").resize((w, h), Image.Resampling.LANCZOS)
|
183 |
+
)
|
184 |
+
|
185 |
+
w_norm = w / float(d_max - 1)
|
186 |
+
h_norm = h / float(d_max - 1)
|
187 |
+
w_half = w_norm / 2
|
188 |
+
h_half = h_norm / 2
|
189 |
+
|
190 |
+
x, y = np.meshgrid(np.arange(w), np.arange(h))
|
191 |
+
x = x / float(d_max - 1) - w_half # [-w_half, w_half]
|
192 |
+
y = -y / float(d_max - 1) + h_half # [-h_half, h_half]
|
193 |
+
z = -depth_image # -depth_emboss (far) - 0 (near)
|
194 |
+
vertices_2d = np.stack((x, y, z), axis=-1)
|
195 |
+
vertices = vertices_2d.reshape(-1, 3)
|
196 |
+
colors = rgb_image[:, :, :3].reshape(-1, 3) / 255.0
|
197 |
+
|
198 |
+
faces = []
|
199 |
+
for y in range(h - 1):
|
200 |
+
for x in range(w - 1):
|
201 |
+
idx = y * w + x
|
202 |
+
faces.append([idx, idx + w, idx + 1])
|
203 |
+
faces.append([idx + 1, idx + w, idx + 1 + w])
|
204 |
+
|
205 |
+
# OUTER frame
|
206 |
+
|
207 |
+
nv = len(vertices)
|
208 |
+
vertices = np.append(
|
209 |
+
vertices,
|
210 |
+
[
|
211 |
+
[-w_half - f_thic, -h_half - f_thic, f_near], # 00
|
212 |
+
[-w_half - f_thic, -h_half - f_thic, f_far_outer], # 01
|
213 |
+
[w_half + f_thic, -h_half - f_thic, f_near], # 02
|
214 |
+
[w_half + f_thic, -h_half - f_thic, f_far_outer], # 03
|
215 |
+
[w_half + f_thic, h_half + f_thic, f_near], # 04
|
216 |
+
[w_half + f_thic, h_half + f_thic, f_far_outer], # 05
|
217 |
+
[-w_half - f_thic, h_half + f_thic, f_near], # 06
|
218 |
+
[-w_half - f_thic, h_half + f_thic, f_far_outer], # 07
|
219 |
+
],
|
220 |
+
axis=0,
|
221 |
+
)
|
222 |
+
faces.extend(
|
223 |
+
[
|
224 |
+
[nv + 0, nv + 1, nv + 2],
|
225 |
+
[nv + 2, nv + 1, nv + 3],
|
226 |
+
[nv + 2, nv + 3, nv + 4],
|
227 |
+
[nv + 4, nv + 3, nv + 5],
|
228 |
+
[nv + 4, nv + 5, nv + 6],
|
229 |
+
[nv + 6, nv + 5, nv + 7],
|
230 |
+
[nv + 6, nv + 7, nv + 0],
|
231 |
+
[nv + 0, nv + 7, nv + 1],
|
232 |
+
]
|
233 |
+
)
|
234 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * 8, axis=0)
|
235 |
+
|
236 |
+
# INNER frame
|
237 |
+
|
238 |
+
nv = len(vertices)
|
239 |
+
vertices_left_data = vertices_2d[:, 0] # H x 3
|
240 |
+
vertices_left_frame = vertices_2d[:, 0].copy() # H x 3
|
241 |
+
vertices_left_frame[:, 2] = f_near
|
242 |
+
vertices = np.append(vertices, vertices_left_data, axis=0)
|
243 |
+
vertices = np.append(vertices, vertices_left_frame, axis=0)
|
244 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * h), axis=0)
|
245 |
+
for i in range(h - 1):
|
246 |
+
nvi_d = nv + i
|
247 |
+
nvi_f = nvi_d + h
|
248 |
+
faces.append([nvi_d, nvi_f, nvi_d + 1])
|
249 |
+
faces.append([nvi_d + 1, nvi_f, nvi_f + 1])
|
250 |
+
|
251 |
+
nv = len(vertices)
|
252 |
+
vertices_right_data = vertices_2d[:, -1] # H x 3
|
253 |
+
vertices_right_frame = vertices_2d[:, -1].copy() # H x 3
|
254 |
+
vertices_right_frame[:, 2] = f_near
|
255 |
+
vertices = np.append(vertices, vertices_right_data, axis=0)
|
256 |
+
vertices = np.append(vertices, vertices_right_frame, axis=0)
|
257 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * h), axis=0)
|
258 |
+
for i in range(h - 1):
|
259 |
+
nvi_d = nv + i
|
260 |
+
nvi_f = nvi_d + h
|
261 |
+
faces.append([nvi_d, nvi_d + 1, nvi_f])
|
262 |
+
faces.append([nvi_d + 1, nvi_f + 1, nvi_f])
|
263 |
+
|
264 |
+
nv = len(vertices)
|
265 |
+
vertices_top_data = vertices_2d[0, :] # H x 3
|
266 |
+
vertices_top_frame = vertices_2d[0, :].copy() # H x 3
|
267 |
+
vertices_top_frame[:, 2] = f_near
|
268 |
+
vertices = np.append(vertices, vertices_top_data, axis=0)
|
269 |
+
vertices = np.append(vertices, vertices_top_frame, axis=0)
|
270 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * w), axis=0)
|
271 |
+
for i in range(w - 1):
|
272 |
+
nvi_d = nv + i
|
273 |
+
nvi_f = nvi_d + w
|
274 |
+
faces.append([nvi_d, nvi_d + 1, nvi_f])
|
275 |
+
faces.append([nvi_d + 1, nvi_f + 1, nvi_f])
|
276 |
+
|
277 |
+
nv = len(vertices)
|
278 |
+
vertices_bottom_data = vertices_2d[-1, :] # H x 3
|
279 |
+
vertices_bottom_frame = vertices_2d[-1, :].copy() # H x 3
|
280 |
+
vertices_bottom_frame[:, 2] = f_near
|
281 |
+
vertices = np.append(vertices, vertices_bottom_data, axis=0)
|
282 |
+
vertices = np.append(vertices, vertices_bottom_frame, axis=0)
|
283 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * w), axis=0)
|
284 |
+
for i in range(w - 1):
|
285 |
+
faces.append([nv, nv + 2 + i + 1, nv + 2 + i])
|
286 |
+
faces.append([nv, nv + 1, nv + w + 1])
|
287 |
+
|
288 |
+
# FRONT frame
|
289 |
+
|
290 |
+
nv = len(vertices)
|
291 |
+
vertices = np.append(
|
292 |
+
vertices,
|
293 |
+
[
|
294 |
+
[-w_half - f_thic, -h_half - f_thic, f_near],
|
295 |
+
[-w_half - f_thic, h_half + f_thic, f_near],
|
296 |
+
],
|
297 |
+
axis=0,
|
298 |
+
)
|
299 |
+
vertices = np.append(vertices, vertices_left_frame, axis=0)
|
300 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + h), axis=0)
|
301 |
+
for i in range(h - 1):
|
302 |
+
faces.append([nv, nv + 2 + i + 1, nv + 2 + i])
|
303 |
+
faces.append([nv, nv + 2, nv + 1])
|
304 |
+
|
305 |
+
nv = len(vertices)
|
306 |
+
vertices = np.append(
|
307 |
+
vertices,
|
308 |
+
[
|
309 |
+
[w_half + f_thic, h_half + f_thic, f_near],
|
310 |
+
[w_half + f_thic, -h_half - f_thic, f_near],
|
311 |
+
],
|
312 |
+
axis=0,
|
313 |
+
)
|
314 |
+
vertices = np.append(vertices, vertices_right_frame, axis=0)
|
315 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + h), axis=0)
|
316 |
+
for i in range(h - 1):
|
317 |
+
faces.append([nv, nv + 2 + i, nv + 2 + i + 1])
|
318 |
+
faces.append([nv, nv + h + 1, nv + 1])
|
319 |
+
|
320 |
+
nv = len(vertices)
|
321 |
+
vertices = np.append(
|
322 |
+
vertices,
|
323 |
+
[
|
324 |
+
[w_half + f_thic, h_half + f_thic, f_near],
|
325 |
+
[-w_half - f_thic, h_half + f_thic, f_near],
|
326 |
+
],
|
327 |
+
axis=0,
|
328 |
+
)
|
329 |
+
vertices = np.append(vertices, vertices_top_frame, axis=0)
|
330 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + w), axis=0)
|
331 |
+
for i in range(w - 1):
|
332 |
+
faces.append([nv, nv + 2 + i, nv + 2 + i + 1])
|
333 |
+
faces.append([nv, nv + 1, nv + 2])
|
334 |
+
|
335 |
+
nv = len(vertices)
|
336 |
+
vertices = np.append(
|
337 |
+
vertices,
|
338 |
+
[
|
339 |
+
[-w_half - f_thic, -h_half - f_thic, f_near],
|
340 |
+
[w_half + f_thic, -h_half - f_thic, f_near],
|
341 |
+
],
|
342 |
+
axis=0,
|
343 |
+
)
|
344 |
+
vertices = np.append(vertices, vertices_bottom_frame, axis=0)
|
345 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + w), axis=0)
|
346 |
+
for i in range(w - 1):
|
347 |
+
faces.append([nv, nv + 2 + i + 1, nv + 2 + i])
|
348 |
+
faces.append([nv, nv + 1, nv + w + 1])
|
349 |
+
|
350 |
+
# BACK frame
|
351 |
+
|
352 |
+
nv = len(vertices)
|
353 |
+
vertices = np.append(
|
354 |
+
vertices,
|
355 |
+
[
|
356 |
+
[-w_half - f_thic, -h_half - f_thic, f_far_outer], # 00
|
357 |
+
[w_half + f_thic, -h_half - f_thic, f_far_outer], # 01
|
358 |
+
[w_half + f_thic, h_half + f_thic, f_far_outer], # 02
|
359 |
+
[-w_half - f_thic, h_half + f_thic, f_far_outer], # 03
|
360 |
+
],
|
361 |
+
axis=0,
|
362 |
+
)
|
363 |
+
faces.extend(
|
364 |
+
[
|
365 |
+
[nv + 0, nv + 2, nv + 1],
|
366 |
+
[nv + 2, nv + 0, nv + 3],
|
367 |
+
]
|
368 |
+
)
|
369 |
+
colors = np.append(colors, [[0.5, 0.5, 0.5]] * 4, axis=0)
|
370 |
+
|
371 |
+
|
372 |
+
trimesh_kwargs = {}
|
373 |
+
if vertex_colors:
|
374 |
+
trimesh_kwargs["vertex_colors"] = colors
|
375 |
+
mesh = trimesh.Trimesh(vertices=vertices, faces=faces, **trimesh_kwargs)
|
376 |
+
|
377 |
+
mesh.merge_vertices()
|
378 |
+
|
379 |
+
current_max_dimension = max(mesh.extents)
|
380 |
+
scaling_factor = output_model_scale / current_max_dimension
|
381 |
+
mesh.apply_scale(scaling_factor)
|
382 |
+
|
383 |
+
if prepare_for_3d_printing:
|
384 |
+
rotation_mat = trimesh.transformations.rotation_matrix(
|
385 |
+
np.radians(0), [0.5, 0, 0]
|
386 |
+
)
|
387 |
+
mesh.apply_transform(rotation_mat)
|
388 |
+
|
389 |
+
if path_out_base is None:
|
390 |
+
path_out_base = os.path.splitext(path_depth)[0].replace("_16bit", "")
|
391 |
+
path_out_glb = path_out_base + ".glb"
|
392 |
+
path_out_stl = path_out_base + ".stl"
|
393 |
+
path_out_obj = path_out_base + ".obj"
|
394 |
+
|
395 |
+
mesh.export(path_out_stl, file_type="stl")
|
396 |
+
"""
|
397 |
+
mesh.export(path_out_glb, file_type="glb")
|
398 |
+
if scene_lights:
|
399 |
+
glb_add_lights(path_out_glb, path_out_glb)
|
400 |
+
mesh.export(path_out_obj, file_type="obj")
|
401 |
+
|
402 |
+
if zip_outputs:
|
403 |
+
with zipfile.ZipFile(path_out_glb + ".zip", "w", zipfile.ZIP_DEFLATED) as zipf:
|
404 |
+
arcname = os.path.basename(os.path.splitext(path_out_glb)[0]) + ".glb"
|
405 |
+
zipf.write(path_out_glb, arcname=arcname)
|
406 |
+
path_out_glb = path_out_glb + ".zip"
|
407 |
+
with zipfile.ZipFile(path_out_stl + ".zip", "w", zipfile.ZIP_DEFLATED) as zipf:
|
408 |
+
arcname = os.path.basename(os.path.splitext(path_out_stl)[0]) + ".stl"
|
409 |
+
zipf.write(path_out_stl, arcname=arcname)
|
410 |
+
path_out_stl = path_out_stl + ".zip"
|
411 |
+
with zipfile.ZipFile(path_out_obj + ".zip", "w", zipfile.ZIP_DEFLATED) as zipf:
|
412 |
+
arcname = os.path.basename(os.path.splitext(path_out_obj)[0]) + ".obj"
|
413 |
+
zipf.write(path_out_obj, arcname=arcname)
|
414 |
+
path_out_obj = path_out_obj + ".zip"
|
415 |
+
"""
|
416 |
+
return path_out_glb, path_out_stl, path_out_obj
|
417 |
+
|
418 |
+
def scale_to_width(img, length):
|
419 |
+
if img.width < img.height:
|
420 |
+
width = length
|
421 |
+
height = round(img.height * length / img.width)
|
422 |
+
else:
|
423 |
+
width = round(img.width * length / img.height)
|
424 |
+
height = length
|
425 |
+
return (width,height)
|
426 |
+
|
427 |
+
|
428 |
+
# Gradio Interface function
|
429 |
+
def process_image_and_generate_stl(image_input, depth_near, depth_far, thickness, alpha):
|
430 |
+
# Depth Estimation
|
431 |
+
raw_img = cv2.imread(image_input)
|
432 |
+
depth = model.infer_image(raw_img) # HxW raw depth map in numpy
|
433 |
+
|
434 |
+
# Save depth map temporarily
|
435 |
+
depth_output_path = "output_depth.png"
|
436 |
+
cv2.imwrite(depth_output_path, depth)
|
437 |
+
|
438 |
+
# Prepare images for 3D model generation
|
439 |
+
img_rgb = image_input
|
440 |
+
img_depth = depth_output_path
|
441 |
+
inv = 0 # Assuming no inversion for now, based on previous code
|
442 |
+
# Image.open(img_rgb).convert("L").save("example_1_black.png") # This line might not be necessary for the final output
|
443 |
+
size = scale_to_width(Image.open(img_rgb), 512)
|
444 |
+
Image.open(img_rgb).resize(size, Image.Resampling.LANCZOS).save("one.png") # Use Resampling.LANCZOS
|
445 |
+
if inv == 1:
|
446 |
+
Image.open(img_depth).convert(mode="F").resize(size, Image.Resampling.BILINEAR).convert("I").save("two.png") # Use Resampling.BILINEAR
|
447 |
+
else:
|
448 |
+
img=Image.open(img_depth).convert(mode="F").resize(size, Image.Resampling.BILINEAR).convert("I") # Use Resampling.BILINEAR
|
449 |
+
img = np.array(img).astype(np.double)
|
450 |
+
im_max=np.max(img)
|
451 |
+
im_min=np.min(img)
|
452 |
+
img=(1-(img-im_min)/(im_max-im_min))*im_max
|
453 |
+
img=Image.fromarray(img)
|
454 |
+
img.convert("I").save("two.png")
|
455 |
+
|
456 |
+
|
457 |
+
# 3D Model Generation
|
458 |
+
output_path_base = "generated_relief"
|
459 |
+
glb_path, stl_path, obj_path = extrude_depth_3d(
|
460 |
+
"one.png",
|
461 |
+
"two.png",
|
462 |
+
alpha=alpha,
|
463 |
+
invert=inv,
|
464 |
+
path_out_base=output_path_base,
|
465 |
+
output_model_scale=100,
|
466 |
+
filter_size=5, # Using 5 based on previous code
|
467 |
+
coef_near=depth_near,
|
468 |
+
coef_far=depth_far,
|
469 |
+
emboss=thickness,
|
470 |
+
f_thic=0.0, # Using 0.0 based on previous code
|
471 |
+
f_near=-thickness, # Using -thickness based on previous code
|
472 |
+
f_back=0.01, # Using 0.01 based on previous code
|
473 |
+
vertex_colors=True,
|
474 |
+
scene_lights=True,
|
475 |
+
prepare_for_3d_printing=True,
|
476 |
+
)
|
477 |
+
|
478 |
+
return stl_path # Return the path to the generated STL file
|
479 |
+
|
480 |
+
|
481 |
+
# Gradio Interface definition
|
482 |
+
iface = gr.Interface(
|
483 |
+
fn=process_image_and_generate_stl,
|
484 |
+
inputs=[
|
485 |
+
gr.Image(type="filepath", label="Upload Image"),
|
486 |
+
gr.Slider(minimum=0, maximum=1.0, value=0, label="Depth Near"),
|
487 |
+
gr.Slider(minimum=0, maximum=1.0, value=1.0, label="Depth Far"),
|
488 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.3, label="Thickness"),
|
489 |
+
gr.Slider(minimum=0, maximum=1.0, value=0.05, label="Alpha"),
|
490 |
+
],
|
491 |
+
outputs=gr.File(label="Download STL File"), # Use gr.File() for file downloads
|
492 |
+
title="Image to 2.5D Relief Model Generator",
|
493 |
+
description="Upload an image, set parameters, and generate a 2.5D relief model (.stl file)."
|
494 |
+
)
|
495 |
+
|
496 |
+
# Launch the interface (for local testing)
|
497 |
+
if __name__ == "__main__":
|
498 |
+
iface.launch(debug=True)
|