Spaces:
Runtime error
Runtime error
File size: 5,088 Bytes
29546b4 91e8a06 6dff40c 29546b4 91e8a06 32b707a 29546b4 4f3c2a8 3b86dfc 5909269 5f7fcf4 5909269 5f7fcf4 01ea22b 370d5a0 5909269 370d5a0 01ea22b 32b707a 29546b4 5f7fcf4 58733e4 29546b4 b98f07f 4f3c2a8 e7226cc 29546b4 e7226cc 3aa78c2 2a860f6 f7d1b51 3aa78c2 b98f07f 3aa78c2 b98f07f 072fab0 3aa78c2 072fab0 3aa78c2 b98f07f f7d1b51 58733e4 2a73469 fccd458 5909269 11ddffe 2a860f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
from dataclasses import dataclass
from enum import Enum
@dataclass
class Task:
benchmark: str
metric: str
col_name: str
# Select your tasks here
# ---------------------------------------------------
class Tasks(Enum):
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
# task0 = Task("anli_r1", "acc", "ANLI")
# task1 = Task("logiqa", "acc_norm", "LogiQA")
# task_0 = Task("multi-table", "AggregationDetection-LogisticRegression", "AggregationDetection-LogisticRegression ⬇️")
task_1 = Task("multi-table", "AggregationDetection-XGBClassifier", "AggregationDetection-XGBClassifier ⬇️")
task_2 = Task("multi-table", "CardinalityShapeSimilarity", "CardinalityShapeSimilarity ⬆️")
class SingleTableTasks(Enum):
task_0 = Task("single-table", "MaximumMeanDiscrepancy", "MaximumMeanDiscrepancy ⬇️")
# PairwiseCorrelationDifference
task_1 = Task("single-table", "PairwiseCorrelationDifference", "PairwiseCorrelationDifference ⬇️")
# SingleTableDetection-LogisticRegression
# task_2 = Task("single-table", "SingleTableDetection-LogisticRegression", "SingleTableDetection-LogisticRegression ⬇️")
# SingleTableDetection-XGBClassifier
task_3 = Task("single-table", "SingleTableDetection-XGBClassifier", "SingleTableDetection-XGBClassifier ⬇️")
class SingleColumnTasks(Enum):
# ChiSquareTest
task_0 = Task("single-column", "ChiSquareTest", "ChiSquareTest ⬇️")
# HellingerDistance
task_1 = Task("single-column", "HellingerDistance", "HellingerDistance ⬇️")
# JensenShannonDistance
task_2 = Task("single-column", "JensenShannonDistance", "JensenShannonDistance ⬇️")
# KolmogorovSmirnovTest
task_3 = Task("single-column", "KolmogorovSmirnovTest", "KolmogorovSmirnovTest ⬇️")
# SingleColumnDetection-LogisticRegression
# task_4 = Task("single-column", "SingleColumnDetection-LogisticRegression", "SingleColumnDetection-LogisticRegression ⬇️")
# SingleColumnDetection-XGBClassifier
task_5 = Task("single-column", "SingleColumnDetection-XGBClassifier", "SingleColumnDetection-XGBClassifier ⬇️")
# TotalVariationDistance
task_6 = Task("single-column", "TotalVariationDistance", "TotalVariationDistance ⬇️")
# WassersteinDistance
task_7 = Task("single-column", "WassersteinDistance", "WassersteinDistance ⬇️")
NUM_FEWSHOT = 0 # Change with your few shot
# ---------------------------------------------------
# Your leaderboard name
TITLE = """<h1 align="center" id="space-title">Syntherela leaderboard</h1>"""
# What does your leaderboard evaluate?
INTRODUCTION_TEXT = """
Intro text
"""
# Which evaluations are you running? how can people reproduce what you have?
LLM_BENCHMARKS_TEXT = f"""
## How it works
## Reproducibility
To reproduce our results, here is the commands you can run:
"""
EVALUATION_QUEUE_TEXT = """
## Some good practices before submitting a model
### 1) Make sure you can load your model and tokenizer using AutoClasses:
```python
from transformers import AutoConfig, AutoModel, AutoTokenizer
config = AutoConfig.from_pretrained("your model name", revision=revision)
model = AutoModel.from_pretrained("your model name", revision=revision)
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
```
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
Note: make sure your model is public!
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
### 3) Make sure your model has an open license!
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
### 4) Fill up your model card
When we add extra information about models to the leaderboard, it will be automatically taken from the model card
## In case of model failure
If your model is displayed in the `FAILED` category, its execution stopped.
Make sure you have followed the above steps first.
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""
@inproceedings{
jurkovic2025syntherela,
title={SyntheRela: A Benchmark For Synthetic Relational Database Generation},
author={Martin Jurkovic and Valter Hudovernik and Erik {\v{S}}trumbelj},
booktitle={Will Synthetic Data Finally Solve the Data Access Problem?},
year={2025},
url={https://openreview.net/forum?id=ZfQofWYn6n}
}
"""
|