Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
from langgraph.graph import StateGraph | |
from langgraph.prebuilt import create_react_agent | |
from langgraph.types import Command | |
from langchain_core.messages import HumanMessage | |
from langchain_anthropic import ChatAnthropic | |
# Set the API key from Hugging Face secrets | |
os.environ["ANTHROPIC_API_KEY"] = os.getenv("ANTHROPIC_API_KEY") | |
# Claude 3.5 Sonnet | |
llm = ChatAnthropic(model="claude-3-5-sonnet-latest") | |
# Create the system prompt | |
def make_system_prompt(suffix: str) -> str: | |
return ( | |
"You are a helpful AI assistant, collaborating with other assistants." | |
" Use the provided tools to progress towards answering the question." | |
" If you are unable to fully answer, that's OK—another assistant with different tools" | |
" will help where you left off. Execute what you can to make progress." | |
" If you or any of the other assistants have the final answer or deliverable," | |
" prefix your response with FINAL ANSWER so the team knows to stop." | |
f"\n{suffix}" | |
) | |
# Workflow node: research | |
def research_node(state): | |
agent = create_react_agent( | |
llm, | |
tools=[], | |
state_modifier=make_system_prompt("You can only do research.") | |
) | |
result = agent.invoke(state) | |
goto = "chart_generator" if "FINAL ANSWER" not in result["messages"][-1].content else "__end__" | |
result["messages"][-1] = HumanMessage( | |
content=result["messages"][-1].content, | |
name="researcher" | |
) | |
return Command(update={"messages": result["messages"]}, goto=goto) | |
# Workflow node: chart generation | |
def chart_node(state): | |
agent = create_react_agent( | |
llm, | |
tools=[], | |
state_modifier=make_system_prompt("You can only generate charts.") | |
) | |
result = agent.invoke(state) | |
result["messages"][-1] = HumanMessage( | |
content=result["messages"][-1].content, | |
name="chart_generator" | |
) | |
return Command(update={"messages": result["messages"]}, goto="__end__") | |
# LangGraph setup | |
workflow = StateGraph(dict) | |
workflow.add_node("researcher", research_node) | |
workflow.add_node("chart_generator", chart_node) | |
workflow.set_entry_point("researcher") | |
workflow.set_finish_point("__end__") | |
workflow.add_edge("researcher", "chart_generator") | |
graph = workflow.compile() | |
# LangGraph runner | |
def run_langgraph(input_text): | |
try: | |
events = graph.stream({"messages": [("user", input_text)]}) | |
output = [] | |
for event in events: | |
output.append(event) | |
final_response = output[-1]["messages"][-1].content | |
if "FINAL ANSWER" in final_response: | |
# Simulated chart creation from dummy data | |
years = [2020, 2021, 2022, 2023, 2024] | |
gdp = [21.4, 22.0, 23.1, 24.8, 26.2] | |
plt.figure() | |
plt.plot(years, gdp, marker="o") | |
plt.title("USA GDP Over Last 5 Years") | |
plt.xlabel("Year") | |
plt.ylabel("GDP in Trillions USD") | |
plt.grid(True) | |
plt.tight_layout() | |
plt.savefig("gdp_chart.png") | |
return "Chart generated based on FINAL ANSWER.", "gdp_chart.png" | |
else: | |
return final_response, None | |
except Exception as e: | |
return f"Error: {str(e)}", None | |
# Gradio interface | |
def process_input(user_input): | |
return run_langgraph(user_input) | |
interface = gr.Interface( | |
fn=process_input, | |
inputs=gr.Textbox(label="Enter your research task"), | |
outputs=[gr.Textbox(label="Output"), gr.Image(type="filepath", label="Chart")], | |
title="LangGraph Research Automation", | |
description="Enter a research prompt and view chart output when applicable." | |
) | |
if __name__ == "__main__": | |
interface.launch() | |