Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,100 +1,110 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import matplotlib.pyplot as plt
|
4 |
-
|
5 |
-
from langgraph.graph import StateGraph
|
6 |
-
from langgraph.graph.message import MessagesState
|
7 |
from langgraph.prebuilt import create_react_agent
|
8 |
from langgraph.types import Command
|
9 |
from langchain_core.messages import HumanMessage
|
10 |
from langchain_anthropic import ChatAnthropic
|
11 |
|
12 |
-
# Set API
|
13 |
os.environ["ANTHROPIC_API_KEY"] = os.getenv("ANTHROPIC_API_KEY")
|
14 |
|
15 |
-
# Claude
|
16 |
llm = ChatAnthropic(model="claude-3-5-sonnet-latest")
|
17 |
|
18 |
-
#
|
19 |
def make_system_prompt(suffix: str) -> str:
|
20 |
return (
|
21 |
"You are a helpful AI assistant, collaborating with other assistants."
|
22 |
" Use the provided tools to progress towards answering the question."
|
23 |
-
" If you are unable to fully answer, that's OK
|
24 |
" will help where you left off. Execute what you can to make progress."
|
25 |
" If you or any of the other assistants have the final answer or deliverable,"
|
26 |
" prefix your response with FINAL ANSWER so the team knows to stop."
|
27 |
f"\n{suffix}"
|
28 |
)
|
29 |
|
30 |
-
#
|
31 |
-
def research_node(state
|
32 |
agent = create_react_agent(
|
33 |
llm,
|
34 |
tools=[],
|
35 |
state_modifier=make_system_prompt("You can only do research.")
|
36 |
)
|
37 |
result = agent.invoke(state)
|
38 |
-
|
39 |
-
result["messages"][-1] = HumanMessage(
|
40 |
-
|
|
|
|
|
41 |
return Command(update={"messages": result["messages"]}, goto=goto)
|
42 |
|
43 |
-
#
|
44 |
-
def chart_node(state
|
45 |
agent = create_react_agent(
|
46 |
llm,
|
47 |
tools=[],
|
48 |
state_modifier=make_system_prompt("You can only generate charts.")
|
49 |
)
|
50 |
result = agent.invoke(state)
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
55 |
|
56 |
-
# LangGraph
|
57 |
-
workflow = StateGraph(
|
58 |
workflow.add_node("researcher", research_node)
|
59 |
workflow.add_node("chart_generator", chart_node)
|
60 |
-
workflow.
|
|
|
61 |
workflow.add_edge("researcher", "chart_generator")
|
62 |
-
workflow.add_edge("chart_generator", END)
|
63 |
graph = workflow.compile()
|
64 |
|
65 |
-
#
|
66 |
-
def
|
67 |
-
fig, ax = plt.subplots()
|
68 |
-
ax.plot([2019, 2020, 2021, 2022, 2023], [21.4, 20.9, 22.7, 25.5, 27.6])
|
69 |
-
ax.set_title("Simulated GDP Growth")
|
70 |
-
ax.set_xlabel("Year")
|
71 |
-
ax.set_ylabel("Trillions USD")
|
72 |
-
buf = BytesIO()
|
73 |
-
plt.savefig(buf, format='png')
|
74 |
-
buf.seek(0)
|
75 |
-
return buf
|
76 |
-
|
77 |
-
# Run LangGraph
|
78 |
-
def run_langgraph(user_input):
|
79 |
try:
|
80 |
-
events = graph.stream({"messages": [("user",
|
81 |
-
|
82 |
for event in events:
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
except Exception as e:
|
88 |
-
return f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
# Gradio UI
|
91 |
interface = gr.Interface(
|
92 |
-
fn=
|
93 |
-
inputs=gr.Textbox(label="
|
94 |
-
outputs=gr.Image(type="
|
95 |
title="LangGraph Research Automation",
|
96 |
description="Enter a research prompt and view chart output when applicable."
|
97 |
)
|
98 |
|
99 |
if __name__ == "__main__":
|
100 |
-
interface.launch(
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
import matplotlib.pyplot as plt
|
4 |
+
import pandas as pd
|
5 |
+
from langgraph.graph import StateGraph
|
|
|
6 |
from langgraph.prebuilt import create_react_agent
|
7 |
from langgraph.types import Command
|
8 |
from langchain_core.messages import HumanMessage
|
9 |
from langchain_anthropic import ChatAnthropic
|
10 |
|
11 |
+
# Set the API key from Hugging Face secrets
|
12 |
os.environ["ANTHROPIC_API_KEY"] = os.getenv("ANTHROPIC_API_KEY")
|
13 |
|
14 |
+
# Claude 3.5 Sonnet
|
15 |
llm = ChatAnthropic(model="claude-3-5-sonnet-latest")
|
16 |
|
17 |
+
# Create the system prompt
|
18 |
def make_system_prompt(suffix: str) -> str:
|
19 |
return (
|
20 |
"You are a helpful AI assistant, collaborating with other assistants."
|
21 |
" Use the provided tools to progress towards answering the question."
|
22 |
+
" If you are unable to fully answer, that's OK—another assistant with different tools"
|
23 |
" will help where you left off. Execute what you can to make progress."
|
24 |
" If you or any of the other assistants have the final answer or deliverable,"
|
25 |
" prefix your response with FINAL ANSWER so the team knows to stop."
|
26 |
f"\n{suffix}"
|
27 |
)
|
28 |
|
29 |
+
# Workflow node: research
|
30 |
+
def research_node(state):
|
31 |
agent = create_react_agent(
|
32 |
llm,
|
33 |
tools=[],
|
34 |
state_modifier=make_system_prompt("You can only do research.")
|
35 |
)
|
36 |
result = agent.invoke(state)
|
37 |
+
goto = "chart_generator" if "FINAL ANSWER" not in result["messages"][-1].content else "__end__"
|
38 |
+
result["messages"][-1] = HumanMessage(
|
39 |
+
content=result["messages"][-1].content,
|
40 |
+
name="researcher"
|
41 |
+
)
|
42 |
return Command(update={"messages": result["messages"]}, goto=goto)
|
43 |
|
44 |
+
# Workflow node: chart generation
|
45 |
+
def chart_node(state):
|
46 |
agent = create_react_agent(
|
47 |
llm,
|
48 |
tools=[],
|
49 |
state_modifier=make_system_prompt("You can only generate charts.")
|
50 |
)
|
51 |
result = agent.invoke(state)
|
52 |
+
result["messages"][-1] = HumanMessage(
|
53 |
+
content=result["messages"][-1].content,
|
54 |
+
name="chart_generator"
|
55 |
+
)
|
56 |
+
return Command(update={"messages": result["messages"]}, goto="__end__")
|
57 |
|
58 |
+
# LangGraph setup
|
59 |
+
workflow = StateGraph(dict)
|
60 |
workflow.add_node("researcher", research_node)
|
61 |
workflow.add_node("chart_generator", chart_node)
|
62 |
+
workflow.set_entry_point("researcher")
|
63 |
+
workflow.set_finish_point("__end__")
|
64 |
workflow.add_edge("researcher", "chart_generator")
|
|
|
65 |
graph = workflow.compile()
|
66 |
|
67 |
+
# LangGraph runner
|
68 |
+
def run_langgraph(input_text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
try:
|
70 |
+
events = graph.stream({"messages": [("user", input_text)]})
|
71 |
+
output = []
|
72 |
for event in events:
|
73 |
+
output.append(event)
|
74 |
+
|
75 |
+
final_response = output[-1]["messages"][-1].content
|
76 |
+
|
77 |
+
if "FINAL ANSWER" in final_response:
|
78 |
+
# Simulated chart creation from dummy data
|
79 |
+
years = [2020, 2021, 2022, 2023, 2024]
|
80 |
+
gdp = [21.4, 22.0, 23.1, 24.8, 26.2]
|
81 |
+
|
82 |
+
plt.figure()
|
83 |
+
plt.plot(years, gdp, marker="o")
|
84 |
+
plt.title("USA GDP Over Last 5 Years")
|
85 |
+
plt.xlabel("Year")
|
86 |
+
plt.ylabel("GDP in Trillions USD")
|
87 |
+
plt.grid(True)
|
88 |
+
plt.tight_layout()
|
89 |
+
plt.savefig("gdp_chart.png")
|
90 |
+
|
91 |
+
return "Chart generated based on FINAL ANSWER.", "gdp_chart.png"
|
92 |
+
else:
|
93 |
+
return final_response, None
|
94 |
except Exception as e:
|
95 |
+
return f"Error: {str(e)}", None
|
96 |
+
|
97 |
+
# Gradio interface
|
98 |
+
def process_input(user_input):
|
99 |
+
return run_langgraph(user_input)
|
100 |
|
|
|
101 |
interface = gr.Interface(
|
102 |
+
fn=process_input,
|
103 |
+
inputs=gr.Textbox(label="Enter your research task"),
|
104 |
+
outputs=[gr.Textbox(label="Output"), gr.Image(type="filepath", label="Chart")],
|
105 |
title="LangGraph Research Automation",
|
106 |
description="Enter a research prompt and view chart output when applicable."
|
107 |
)
|
108 |
|
109 |
if __name__ == "__main__":
|
110 |
+
interface.launch()
|