Spaces:
Runtime error
Runtime error
# Copyright 2024 MIT Han Lab | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ...models.nn.act import build_act | |
from ...models.nn.norm import build_norm | |
from ...models.utils import get_same_padding, list_sum, resize, val2list, val2tuple | |
__all__ = [ | |
"ConvLayer", | |
"UpSampleLayer", | |
"ConvPixelUnshuffleDownSampleLayer", | |
"PixelUnshuffleChannelAveragingDownSampleLayer", | |
"ConvPixelShuffleUpSampleLayer", | |
"ChannelDuplicatingPixelUnshuffleUpSampleLayer", | |
"LinearLayer", | |
"IdentityLayer", | |
"DSConv", | |
"MBConv", | |
"FusedMBConv", | |
"ResBlock", | |
"LiteMLA", | |
"EfficientViTBlock", | |
"ResidualBlock", | |
"DAGBlock", | |
"OpSequential", | |
] | |
################################################################################# | |
# Basic Layers # | |
################################################################################# | |
class ConvLayer(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size=3, | |
stride=1, | |
dilation=1, | |
groups=1, | |
use_bias=False, | |
dropout=0, | |
norm="bn2d", | |
act_func="relu", | |
): | |
super().__init__() | |
padding = get_same_padding(kernel_size) | |
padding *= dilation | |
self.dropout = nn.Dropout2d(dropout, inplace=False) if dropout > 0 else None | |
self.conv = nn.Conv2d( | |
in_channels, | |
out_channels, | |
kernel_size=(kernel_size, kernel_size), | |
stride=(stride, stride), | |
padding=padding, | |
dilation=(dilation, dilation), | |
groups=groups, | |
bias=use_bias, | |
) | |
self.norm = build_norm(norm, num_features=out_channels) | |
self.act = build_act(act_func) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
if self.dropout is not None: | |
x = self.dropout(x) | |
x = self.conv(x) | |
if self.norm: | |
x = self.norm(x) | |
if self.act: | |
x = self.act(x) | |
return x | |
class UpSampleLayer(nn.Module): | |
def __init__( | |
self, | |
mode="bicubic", | |
size: Optional[int | tuple[int, int] | list[int]] = None, | |
factor=2, | |
align_corners=False, | |
): | |
super().__init__() | |
self.mode = mode | |
self.size = val2list(size, 2) if size is not None else None | |
self.factor = None if self.size is not None else factor | |
self.align_corners = align_corners | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
if (self.size is not None and tuple(x.shape[-2:]) == self.size) or self.factor == 1: | |
return x | |
if x.dtype in [torch.float16, torch.bfloat16]: | |
x = x.float() | |
return resize(x, self.size, self.factor, self.mode, self.align_corners) | |
class ConvPixelUnshuffleDownSampleLayer(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int, | |
factor: int, | |
): | |
super().__init__() | |
self.factor = factor | |
out_ratio = factor**2 | |
assert out_channels % out_ratio == 0 | |
self.conv = ConvLayer( | |
in_channels=in_channels, | |
out_channels=out_channels // out_ratio, | |
kernel_size=kernel_size, | |
use_bias=True, | |
norm=None, | |
act_func=None, | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.conv(x) | |
x = F.pixel_unshuffle(x, self.factor) | |
return x | |
class PixelUnshuffleChannelAveragingDownSampleLayer(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
factor: int, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.factor = factor | |
assert in_channels * factor**2 % out_channels == 0 | |
self.group_size = in_channels * factor**2 // out_channels | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = F.pixel_unshuffle(x, self.factor) | |
B, C, H, W = x.shape | |
x = x.view(B, self.out_channels, self.group_size, H, W) | |
x = x.mean(dim=2) | |
return x | |
class ConvPixelShuffleUpSampleLayer(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int, | |
factor: int, | |
): | |
super().__init__() | |
self.factor = factor | |
out_ratio = factor**2 | |
self.conv = ConvLayer( | |
in_channels=in_channels, | |
out_channels=out_channels * out_ratio, | |
kernel_size=kernel_size, | |
use_bias=True, | |
norm=None, | |
act_func=None, | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.conv(x) | |
x = F.pixel_shuffle(x, self.factor) | |
return x | |
class InterpolateConvUpSampleLayer(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int, | |
factor: int, | |
mode: str = "nearest", | |
) -> None: | |
super().__init__() | |
self.factor = factor | |
self.mode = mode | |
self.conv = ConvLayer( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
use_bias=True, | |
norm=None, | |
act_func=None, | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = torch.nn.functional.interpolate(x, scale_factor=self.factor, mode=self.mode) | |
x = self.conv(x) | |
return x | |
class ChannelDuplicatingPixelUnshuffleUpSampleLayer(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
factor: int, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.factor = factor | |
assert out_channels * factor**2 % in_channels == 0 | |
self.repeats = out_channels * factor**2 // in_channels | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = x.repeat_interleave(self.repeats, dim=1) | |
x = F.pixel_shuffle(x, self.factor) | |
return x | |
class LinearLayer(nn.Module): | |
def __init__( | |
self, | |
in_features: int, | |
out_features: int, | |
use_bias=True, | |
dropout=0, | |
norm=None, | |
act_func=None, | |
): | |
super().__init__() | |
self.dropout = nn.Dropout(dropout, inplace=False) if dropout > 0 else None | |
self.linear = nn.Linear(in_features, out_features, use_bias) | |
self.norm = build_norm(norm, num_features=out_features) | |
self.act = build_act(act_func) | |
def _try_squeeze(self, x: torch.Tensor) -> torch.Tensor: | |
if x.dim() > 2: | |
x = torch.flatten(x, start_dim=1) | |
return x | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self._try_squeeze(x) | |
if self.dropout: | |
x = self.dropout(x) | |
x = self.linear(x) | |
if self.norm: | |
x = self.norm(x) | |
if self.act: | |
x = self.act(x) | |
return x | |
class IdentityLayer(nn.Module): | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return x | |
################################################################################# | |
# Basic Blocks # | |
################################################################################# | |
class DSConv(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size=3, | |
stride=1, | |
use_bias=False, | |
norm=("bn2d", "bn2d"), | |
act_func=("relu6", None), | |
): | |
super().__init__() | |
use_bias = val2tuple(use_bias, 2) | |
norm = val2tuple(norm, 2) | |
act_func = val2tuple(act_func, 2) | |
self.depth_conv = ConvLayer( | |
in_channels, | |
in_channels, | |
kernel_size, | |
stride, | |
groups=in_channels, | |
norm=norm[0], | |
act_func=act_func[0], | |
use_bias=use_bias[0], | |
) | |
self.point_conv = ConvLayer( | |
in_channels, | |
out_channels, | |
1, | |
norm=norm[1], | |
act_func=act_func[1], | |
use_bias=use_bias[1], | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.depth_conv(x) | |
x = self.point_conv(x) | |
return x | |
class MBConv(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size=3, | |
stride=1, | |
mid_channels=None, | |
expand_ratio=6, | |
use_bias=False, | |
norm=("bn2d", "bn2d", "bn2d"), | |
act_func=("relu6", "relu6", None), | |
): | |
super().__init__() | |
use_bias = val2tuple(use_bias, 3) | |
norm = val2tuple(norm, 3) | |
act_func = val2tuple(act_func, 3) | |
mid_channels = round(in_channels * expand_ratio) if mid_channels is None else mid_channels | |
self.inverted_conv = ConvLayer( | |
in_channels, | |
mid_channels, | |
1, | |
stride=1, | |
norm=norm[0], | |
act_func=act_func[0], | |
use_bias=use_bias[0], | |
) | |
self.depth_conv = ConvLayer( | |
mid_channels, | |
mid_channels, | |
kernel_size, | |
stride=stride, | |
groups=mid_channels, | |
norm=norm[1], | |
act_func=act_func[1], | |
use_bias=use_bias[1], | |
) | |
self.point_conv = ConvLayer( | |
mid_channels, | |
out_channels, | |
1, | |
norm=norm[2], | |
act_func=act_func[2], | |
use_bias=use_bias[2], | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.inverted_conv(x) | |
x = self.depth_conv(x) | |
x = self.point_conv(x) | |
return x | |
class FusedMBConv(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size=3, | |
stride=1, | |
mid_channels=None, | |
expand_ratio=6, | |
groups=1, | |
use_bias=False, | |
norm=("bn2d", "bn2d"), | |
act_func=("relu6", None), | |
): | |
super().__init__() | |
use_bias = val2tuple(use_bias, 2) | |
norm = val2tuple(norm, 2) | |
act_func = val2tuple(act_func, 2) | |
mid_channels = round(in_channels * expand_ratio) if mid_channels is None else mid_channels | |
self.spatial_conv = ConvLayer( | |
in_channels, | |
mid_channels, | |
kernel_size, | |
stride, | |
groups=groups, | |
use_bias=use_bias[0], | |
norm=norm[0], | |
act_func=act_func[0], | |
) | |
self.point_conv = ConvLayer( | |
mid_channels, | |
out_channels, | |
1, | |
use_bias=use_bias[1], | |
norm=norm[1], | |
act_func=act_func[1], | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.spatial_conv(x) | |
x = self.point_conv(x) | |
return x | |
class GLUMBConv(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size=3, | |
stride=1, | |
mid_channels=None, | |
expand_ratio=6, | |
use_bias=False, | |
norm=(None, None, "ln2d"), | |
act_func=("silu", "silu", None), | |
): | |
super().__init__() | |
use_bias = val2tuple(use_bias, 3) | |
norm = val2tuple(norm, 3) | |
act_func = val2tuple(act_func, 3) | |
mid_channels = round(in_channels * expand_ratio) if mid_channels is None else mid_channels | |
self.glu_act = build_act(act_func[1], inplace=False) | |
self.inverted_conv = ConvLayer( | |
in_channels, | |
mid_channels * 2, | |
1, | |
use_bias=use_bias[0], | |
norm=norm[0], | |
act_func=act_func[0], | |
) | |
self.depth_conv = ConvLayer( | |
mid_channels * 2, | |
mid_channels * 2, | |
kernel_size, | |
stride=stride, | |
groups=mid_channels * 2, | |
use_bias=use_bias[1], | |
norm=norm[1], | |
act_func=None, | |
) | |
self.point_conv = ConvLayer( | |
mid_channels, | |
out_channels, | |
1, | |
use_bias=use_bias[2], | |
norm=norm[2], | |
act_func=act_func[2], | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.inverted_conv(x) | |
x = self.depth_conv(x) | |
x, gate = torch.chunk(x, 2, dim=1) | |
gate = self.glu_act(gate) | |
x = x * gate | |
x = self.point_conv(x) | |
return x | |
class ResBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size=3, | |
stride=1, | |
mid_channels=None, | |
expand_ratio=1, | |
use_bias=False, | |
norm=("bn2d", "bn2d"), | |
act_func=("relu6", None), | |
): | |
super().__init__() | |
use_bias = val2tuple(use_bias, 2) | |
norm = val2tuple(norm, 2) | |
act_func = val2tuple(act_func, 2) | |
mid_channels = round(in_channels * expand_ratio) if mid_channels is None else mid_channels | |
self.conv1 = ConvLayer( | |
in_channels, | |
mid_channels, | |
kernel_size, | |
stride, | |
use_bias=use_bias[0], | |
norm=norm[0], | |
act_func=act_func[0], | |
) | |
self.conv2 = ConvLayer( | |
mid_channels, | |
out_channels, | |
kernel_size, | |
1, | |
use_bias=use_bias[1], | |
norm=norm[1], | |
act_func=act_func[1], | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.conv1(x) | |
x = self.conv2(x) | |
return x | |
class LiteMLA(nn.Module): | |
r"""Lightweight multi-scale linear attention""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
heads: Optional[int] = None, | |
heads_ratio: float = 1.0, | |
dim=8, | |
use_bias=False, | |
norm=(None, "bn2d"), | |
act_func=(None, None), | |
kernel_func="relu", | |
scales: tuple[int, ...] = (5,), | |
eps=1.0e-15, | |
): | |
super().__init__() | |
self.eps = eps | |
heads = int(in_channels // dim * heads_ratio) if heads is None else heads | |
total_dim = heads * dim | |
use_bias = val2tuple(use_bias, 2) | |
norm = val2tuple(norm, 2) | |
act_func = val2tuple(act_func, 2) | |
self.dim = dim | |
self.qkv = ConvLayer( | |
in_channels, | |
3 * total_dim, | |
1, | |
use_bias=use_bias[0], | |
norm=norm[0], | |
act_func=act_func[0], | |
) | |
self.aggreg = nn.ModuleList( | |
[ | |
nn.Sequential( | |
nn.Conv2d( | |
3 * total_dim, | |
3 * total_dim, | |
scale, | |
padding=get_same_padding(scale), | |
groups=3 * total_dim, | |
bias=use_bias[0], | |
), | |
nn.Conv2d(3 * total_dim, 3 * total_dim, 1, groups=3 * heads, bias=use_bias[0]), | |
) | |
for scale in scales | |
] | |
) | |
self.kernel_func = build_act(kernel_func, inplace=False) | |
self.proj = ConvLayer( | |
total_dim * (1 + len(scales)), | |
out_channels, | |
1, | |
use_bias=use_bias[1], | |
norm=norm[1], | |
act_func=act_func[1], | |
) | |
def relu_linear_att(self, qkv: torch.Tensor) -> torch.Tensor: | |
B, _, H, W = list(qkv.size()) | |
if qkv.dtype == torch.float16: | |
qkv = qkv.float() | |
qkv = torch.reshape( | |
qkv, | |
( | |
B, | |
-1, | |
3 * self.dim, | |
H * W, | |
), | |
) | |
q, k, v = ( | |
qkv[:, :, 0 : self.dim], | |
qkv[:, :, self.dim : 2 * self.dim], | |
qkv[:, :, 2 * self.dim :], | |
) | |
# lightweight linear attention | |
q = self.kernel_func(q) | |
k = self.kernel_func(k) | |
# linear matmul | |
trans_k = k.transpose(-1, -2) | |
v = F.pad(v, (0, 0, 0, 1), mode="constant", value=1) | |
vk = torch.matmul(v, trans_k) | |
out = torch.matmul(vk, q) | |
if out.dtype == torch.bfloat16: | |
out = out.float() | |
out = out[:, :, :-1] / (out[:, :, -1:] + self.eps) | |
out = torch.reshape(out, (B, -1, H, W)) | |
return out | |
def relu_quadratic_att(self, qkv: torch.Tensor) -> torch.Tensor: | |
B, _, H, W = list(qkv.size()) | |
qkv = torch.reshape( | |
qkv, | |
( | |
B, | |
-1, | |
3 * self.dim, | |
H * W, | |
), | |
) | |
q, k, v = ( | |
qkv[:, :, 0 : self.dim], | |
qkv[:, :, self.dim : 2 * self.dim], | |
qkv[:, :, 2 * self.dim :], | |
) | |
q = self.kernel_func(q) | |
k = self.kernel_func(k) | |
att_map = torch.matmul(k.transpose(-1, -2), q) # b h n n | |
original_dtype = att_map.dtype | |
if original_dtype in [torch.float16, torch.bfloat16]: | |
att_map = att_map.float() | |
att_map = att_map / (torch.sum(att_map, dim=2, keepdim=True) + self.eps) # b h n n | |
att_map = att_map.to(original_dtype) | |
out = torch.matmul(v, att_map) # b h d n | |
out = torch.reshape(out, (B, -1, H, W)) | |
return out | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
# generate multi-scale q, k, v | |
qkv = self.qkv(x) | |
multi_scale_qkv = [qkv] | |
for op in self.aggreg: | |
multi_scale_qkv.append(op(qkv)) | |
qkv = torch.cat(multi_scale_qkv, dim=1) | |
H, W = list(qkv.size())[-2:] | |
if H * W > self.dim: | |
out = self.relu_linear_att(qkv).to(qkv.dtype) | |
else: | |
out = self.relu_quadratic_att(qkv) | |
out = self.proj(out) | |
return out | |
class EfficientViTBlock(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
heads_ratio: float = 1.0, | |
dim=32, | |
expand_ratio: float = 4, | |
scales: tuple[int, ...] = (5,), | |
norm: str = "bn2d", | |
act_func: str = "hswish", | |
context_module: str = "LiteMLA", | |
local_module: str = "MBConv", | |
): | |
super().__init__() | |
if context_module == "LiteMLA": | |
self.context_module = ResidualBlock( | |
LiteMLA( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
heads_ratio=heads_ratio, | |
dim=dim, | |
norm=(None, norm), | |
scales=scales, | |
), | |
IdentityLayer(), | |
) | |
else: | |
raise ValueError(f"context_module {context_module} is not supported") | |
if local_module == "MBConv": | |
self.local_module = ResidualBlock( | |
MBConv( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
expand_ratio=expand_ratio, | |
use_bias=(True, True, False), | |
norm=(None, None, norm), | |
act_func=(act_func, act_func, None), | |
), | |
IdentityLayer(), | |
) | |
elif local_module == "GLUMBConv": | |
self.local_module = ResidualBlock( | |
GLUMBConv( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
expand_ratio=expand_ratio, | |
use_bias=(True, True, False), | |
norm=(None, None, norm), | |
act_func=(act_func, act_func, None), | |
), | |
IdentityLayer(), | |
) | |
else: | |
raise NotImplementedError(f"local_module {local_module} is not supported") | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.context_module(x) | |
x = self.local_module(x) | |
return x | |
################################################################################# | |
# Functional Blocks # | |
################################################################################# | |
class ResidualBlock(nn.Module): | |
def __init__( | |
self, | |
main: Optional[nn.Module], | |
shortcut: Optional[nn.Module], | |
post_act=None, | |
pre_norm: Optional[nn.Module] = None, | |
): | |
super().__init__() | |
self.pre_norm = pre_norm | |
self.main = main | |
self.shortcut = shortcut | |
self.post_act = build_act(post_act) | |
def forward_main(self, x: torch.Tensor) -> torch.Tensor: | |
if self.pre_norm is None: | |
return self.main(x) | |
else: | |
return self.main(self.pre_norm(x)) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
if self.main is None: | |
res = x | |
elif self.shortcut is None: | |
res = self.forward_main(x) | |
else: | |
res = self.forward_main(x) + self.shortcut(x) | |
if self.post_act: | |
res = self.post_act(res) | |
return res | |
class DAGBlock(nn.Module): | |
def __init__( | |
self, | |
inputs: dict[str, nn.Module], | |
merge: str, | |
post_input: Optional[nn.Module], | |
middle: nn.Module, | |
outputs: dict[str, nn.Module], | |
): | |
super().__init__() | |
self.input_keys = list(inputs.keys()) | |
self.input_ops = nn.ModuleList(list(inputs.values())) | |
self.merge = merge | |
self.post_input = post_input | |
self.middle = middle | |
self.output_keys = list(outputs.keys()) | |
self.output_ops = nn.ModuleList(list(outputs.values())) | |
def forward(self, feature_dict: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: | |
feat = [op(feature_dict[key]) for key, op in zip(self.input_keys, self.input_ops)] | |
if self.merge == "add": | |
feat = list_sum(feat) | |
elif self.merge == "cat": | |
feat = torch.concat(feat, dim=1) | |
else: | |
raise NotImplementedError | |
if self.post_input is not None: | |
feat = self.post_input(feat) | |
feat = self.middle(feat) | |
for key, op in zip(self.output_keys, self.output_ops): | |
feature_dict[key] = op(feat) | |
return feature_dict | |
class OpSequential(nn.Module): | |
def __init__(self, op_list: list[Optional[nn.Module]]): | |
super().__init__() | |
valid_op_list = [] | |
for op in op_list: | |
if op is not None: | |
valid_op_list.append(op) | |
self.op_list = nn.ModuleList(valid_op_list) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
for op in self.op_list: | |
x = op(x) | |
return x | |