Spaces:
Runtime error
Runtime error
# Copyright 2024 MIT Han Lab | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
from typing import Union | |
import torch | |
from ...apps.utils.dist import sync_tensor | |
__all__ = ["AverageMeter"] | |
class AverageMeter: | |
"""Computes and stores the average and current value.""" | |
def __init__(self, is_distributed=True): | |
self.is_distributed = is_distributed | |
self.sum = 0 | |
self.count = 0 | |
def _sync(self, val: Union[torch.Tensor, int, float]) -> Union[torch.Tensor, int, float]: | |
return sync_tensor(val, reduce="sum") if self.is_distributed else val | |
def update(self, val: Union[torch.Tensor, int, float], delta_n=1): | |
self.count += self._sync(delta_n) | |
self.sum += self._sync(val * delta_n) | |
def get_count(self) -> Union[torch.Tensor, int, float]: | |
return self.count.item() if isinstance(self.count, torch.Tensor) and self.count.numel() == 1 else self.count | |
def avg(self): | |
avg = -1 if self.count == 0 else self.sum / self.count | |
return avg.item() if isinstance(avg, torch.Tensor) and avg.numel() == 1 else avg | |