Spaces:
Runtime error
Runtime error
# Copyright 2024 MIT Han Lab | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import os | |
from typing import Union | |
import torch | |
import torch.distributed | |
from ...models.utils.list import list_mean, list_sum | |
__all__ = [ | |
"dist_init", | |
"is_dist_initialized", | |
"get_dist_rank", | |
"get_dist_size", | |
"is_master", | |
"dist_barrier", | |
"get_dist_local_rank", | |
"sync_tensor", | |
] | |
def dist_init() -> None: | |
if is_dist_initialized(): | |
return | |
try: | |
torch.distributed.init_process_group(backend="nccl") | |
assert torch.distributed.is_initialized() | |
except Exception: | |
os.environ["RANK"] = "0" | |
os.environ["WORLD_SIZE"] = "1" | |
os.environ["LOCAL_RANK"] = "0" | |
print("warning: dist not init") | |
def is_dist_initialized() -> bool: | |
return torch.distributed.is_initialized() | |
def get_dist_rank() -> int: | |
return int(os.environ["RANK"]) | |
def get_dist_size() -> int: | |
return int(os.environ["WORLD_SIZE"]) | |
def is_master() -> bool: | |
return get_dist_rank() == 0 | |
def dist_barrier() -> None: | |
if is_dist_initialized(): | |
torch.distributed.barrier() | |
def get_dist_local_rank() -> int: | |
return int(os.environ["LOCAL_RANK"]) | |
def sync_tensor(tensor: Union[torch.Tensor, float], reduce="mean") -> Union[torch.Tensor, list[torch.Tensor]]: | |
if not is_dist_initialized(): | |
return tensor | |
if not isinstance(tensor, torch.Tensor): | |
tensor = torch.Tensor(1).fill_(tensor).cuda() | |
tensor_list = [torch.empty_like(tensor) for _ in range(get_dist_size())] | |
torch.distributed.all_gather(tensor_list, tensor.contiguous(), async_op=False) | |
if reduce == "mean": | |
return list_mean(tensor_list) | |
elif reduce == "sum": | |
return list_sum(tensor_list) | |
elif reduce == "cat": | |
return torch.cat(tensor_list, dim=0) | |
elif reduce == "root": | |
return tensor_list[0] | |
else: | |
return tensor_list | |