|
import gradio as gr |
|
from PIL import Image |
|
import numpy as np |
|
import cv2 |
|
from lang_sam import LangSAM |
|
from color_matcher import ColorMatcher |
|
from color_matcher.normalizer import Normalizer |
|
import torch |
|
import warnings |
|
|
|
|
|
warnings.filterwarnings("ignore", category=UserWarning) |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
print(f"Using device: {device}") |
|
|
|
|
|
model = LangSAM() |
|
|
|
|
|
def extract_masks(image_pil, prompts): |
|
""" |
|
Extracts masks for each prompt using the LangSAM model. |
|
|
|
Args: |
|
image_pil (PIL.Image): The input image. |
|
prompts (str): Comma-separated prompts for segmentation. |
|
|
|
Returns: |
|
dict: A dictionary mapping each prompt to its corresponding binary mask. |
|
""" |
|
prompts_list = [p.strip() for p in prompts.split(',') if p.strip()] |
|
masks_dict = {} |
|
with torch.no_grad(): |
|
for prompt in prompts_list: |
|
|
|
masks, boxes, phrases, logits = model.predict(image_pil, prompt) |
|
if masks is not None and len(masks) > 0: |
|
|
|
masks_np = masks[0].cpu().numpy() |
|
mask = (masks_np > 0).astype(np.uint8) * 255 |
|
masks_dict[prompt] = mask |
|
return masks_dict |
|
|
|
def apply_color_matching(source_img_np, ref_img_np): |
|
""" |
|
Applies color matching from the reference image to the source image. |
|
|
|
Args: |
|
source_img_np (numpy.ndarray): Source image in NumPy array format. |
|
ref_img_np (numpy.ndarray): Reference image in NumPy array format. |
|
|
|
Returns: |
|
numpy.ndarray: Color-matched image. |
|
""" |
|
|
|
cm = ColorMatcher() |
|
|
|
|
|
img_res = cm.transfer(src=source_img_np, ref=ref_img_np, method='mkl') |
|
|
|
|
|
img_res = Normalizer(img_res).uint8_norm() |
|
|
|
return img_res |
|
|
|
def process_image(current_image_pil, selected_prompt, masks_dict, replacement_image_pil, color_ref_image_pil, apply_replacement, apply_color_grading, apply_color_to_full_image, blending_amount, image_history): |
|
""" |
|
Processes the image by applying replacement and/or color grading based on user input. |
|
|
|
Args: |
|
current_image_pil (PIL.Image): The current image to be edited. |
|
selected_prompt (str): The selected segment prompt. |
|
masks_dict (dict): Dictionary of masks for each prompt. |
|
replacement_image_pil (PIL.Image): Replacement image (optional). |
|
color_ref_image_pil (PIL.Image): Color reference image (optional). |
|
apply_replacement (bool): Flag to apply replacement. |
|
apply_color_grading (bool): Flag to apply color grading. |
|
apply_color_to_full_image (bool): Flag to apply color grading to the full image. |
|
blending_amount (int): Amount for blending the mask. |
|
image_history (list): History of images for undo functionality. |
|
|
|
Returns: |
|
tuple: Updated image, status message, updated history, and image display. |
|
""" |
|
|
|
if current_image_pil is None: |
|
return None, "No current image to edit.", image_history, None |
|
|
|
if not apply_replacement and not apply_color_grading: |
|
return current_image_pil, "No changes applied. Please select at least one operation.", image_history, current_image_pil |
|
|
|
if apply_replacement and replacement_image_pil is None: |
|
return current_image_pil, "Replacement image not provided.", image_history, current_image_pil |
|
|
|
if apply_color_grading and color_ref_image_pil is None: |
|
return current_image_pil, "Color reference image not provided.", image_history, current_image_pil |
|
|
|
|
|
if selected_prompt not in masks_dict: |
|
return current_image_pil, f"No mask available for selected segment: {selected_prompt}", image_history, current_image_pil |
|
|
|
mask = masks_dict[selected_prompt] |
|
|
|
|
|
if image_history is None: |
|
image_history = [] |
|
image_history.append(current_image_pil.copy()) |
|
|
|
|
|
current_image_np = np.array(current_image_pil) |
|
result_image_np = current_image_np.copy() |
|
|
|
|
|
|
|
mask_normalized = mask.astype(np.float32) / 255.0 |
|
|
|
|
|
if blending_amount > 0: |
|
|
|
kernel_size = int(blending_amount) |
|
if kernel_size % 2 == 0: |
|
kernel_size += 1 |
|
mask_blurred = cv2.GaussianBlur(mask_normalized, (kernel_size, kernel_size), 0) |
|
else: |
|
mask_blurred = mask_normalized |
|
|
|
|
|
mask_blurred_3ch = cv2.merge([mask_blurred, mask_blurred, mask_blurred]) |
|
|
|
|
|
if apply_replacement: |
|
|
|
replacement_image_resized = replacement_image_pil.resize(current_image_pil.size) |
|
replacement_image_np = np.array(replacement_image_resized) |
|
|
|
|
|
result_image_np = (replacement_image_np.astype(np.float32) * mask_blurred_3ch + result_image_np.astype(np.float32) * (1 - mask_blurred_3ch)).astype(np.uint8) |
|
|
|
|
|
if apply_color_grading: |
|
|
|
color_ref_image_np = np.array(color_ref_image_pil) |
|
|
|
if apply_color_to_full_image: |
|
|
|
color_matched_image = apply_color_matching(result_image_np, color_ref_image_np) |
|
result_image_np = color_matched_image |
|
else: |
|
|
|
|
|
masked_region = (result_image_np.astype(np.float32) * mask_blurred_3ch).astype(np.uint8) |
|
|
|
color_matched_region = apply_color_matching(masked_region, color_ref_image_np) |
|
|
|
result_image_np = (color_matched_region.astype(np.float32) * mask_blurred_3ch + result_image_np.astype(np.float32) * (1 - mask_blurred_3ch)).astype(np.uint8) |
|
|
|
|
|
result_image_pil = Image.fromarray(result_image_np) |
|
|
|
|
|
current_image_pil = result_image_pil |
|
|
|
return current_image_pil, f"Applied changes to '{selected_prompt}'", image_history, current_image_pil |
|
|
|
def undo(image_history): |
|
""" |
|
Undoes the last image edit by reverting to the previous image in the history. |
|
|
|
Args: |
|
image_history (list): History of images. |
|
|
|
Returns: |
|
tuple: Reverted image, updated history, and image display. |
|
""" |
|
if image_history and len(image_history) > 1: |
|
|
|
image_history.pop() |
|
|
|
current_image_pil = image_history[-1] |
|
return current_image_pil, image_history, current_image_pil |
|
elif image_history and len(image_history) == 1: |
|
current_image_pil = image_history[0] |
|
return current_image_pil, image_history, current_image_pil |
|
else: |
|
|
|
return None, [], None |
|
|
|
def gradio_interface(): |
|
""" |
|
Defines and launches the Gradio interface for continuous image editing. |
|
""" |
|
with gr.Blocks() as demo: |
|
|
|
image_history = gr.State([]) |
|
current_image_pil = gr.State(None) |
|
masks_dict = gr.State({}) |
|
|
|
gr.Markdown("## Continuous Image Editing with LangSAM") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
initial_image = gr.Image(type="pil", label="Upload Image") |
|
prompts = gr.Textbox(lines=1, placeholder="Enter prompts separated by commas (e.g., sky, grass)", label="Prompts") |
|
segment_button = gr.Button("Segment Image") |
|
segment_dropdown = gr.Dropdown(label="Select Segment", choices=[], allow_custom_value=True) |
|
replacement_image = gr.Image(type="pil", label="Replacement Image (optional)") |
|
color_ref_image = gr.Image(type="pil", label="Color Reference Image (optional)") |
|
apply_replacement = gr.Checkbox(label="Apply Replacement", value=False) |
|
apply_color_grading = gr.Checkbox(label="Apply Color Grading", value=False) |
|
apply_color_to_full_image = gr.Checkbox(label="Apply Color Correction to Full Image", value=False) |
|
blending_amount = gr.Slider(minimum=0, maximum=500, step=1, label="Blending Amount", value=150) |
|
apply_button = gr.Button("Apply Changes") |
|
undo_button = gr.Button("Undo") |
|
with gr.Column(): |
|
current_image_display = gr.Image(type="pil", label="Edited Image", interactive=False) |
|
status = gr.Textbox(lines=2, interactive=False, label="Status") |
|
|
|
def initialize_image(initial_image_pil): |
|
""" |
|
Initializes the image history and sets up the initial image. |
|
|
|
Args: |
|
initial_image_pil (PIL.Image): The uploaded initial image. |
|
|
|
Returns: |
|
tuple: Updated states and status message. |
|
""" |
|
if initial_image_pil is not None: |
|
image_history = [initial_image_pil] |
|
current_image_pil = initial_image_pil |
|
return current_image_pil, image_history, initial_image_pil, {}, gr.update(choices=[], value=None), "Image loaded." |
|
else: |
|
return None, [], None, {}, gr.update(choices=[], value=None), "No image loaded." |
|
|
|
|
|
initial_image.upload( |
|
fn=initialize_image, |
|
inputs=initial_image, |
|
outputs=[current_image_pil, image_history, current_image_display, masks_dict, segment_dropdown, status] |
|
) |
|
|
|
|
|
def segment_image_wrapper(current_image_pil, prompts): |
|
""" |
|
Handles the segmentation of the image based on user prompts. |
|
|
|
Args: |
|
current_image_pil (PIL.Image): The current image. |
|
prompts (str): Comma-separated prompts. |
|
|
|
Returns: |
|
tuple: Status message, updated masks, and dropdown updates. |
|
""" |
|
if current_image_pil is None: |
|
return "No image uploaded.", {}, gr.update(choices=[], value=None) |
|
masks = extract_masks(current_image_pil, prompts) |
|
if not masks: |
|
return "No masks detected for the given prompts.", {}, gr.update(choices=[], value=None) |
|
dropdown_choices = list(masks.keys()) |
|
return "Segmentation completed.", masks, gr.update(choices=dropdown_choices, value=dropdown_choices[0]) |
|
|
|
segment_button.click( |
|
fn=segment_image_wrapper, |
|
inputs=[current_image_pil, prompts], |
|
outputs=[status, masks_dict, segment_dropdown] |
|
) |
|
|
|
|
|
apply_button.click( |
|
fn=process_image, |
|
inputs=[ |
|
current_image_pil, |
|
segment_dropdown, |
|
masks_dict, |
|
replacement_image, |
|
color_ref_image, |
|
apply_replacement, |
|
apply_color_grading, |
|
apply_color_to_full_image, |
|
blending_amount, |
|
image_history |
|
], |
|
outputs=[current_image_pil, status, image_history, current_image_display] |
|
) |
|
|
|
|
|
undo_button.click( |
|
fn=undo, |
|
inputs=image_history, |
|
outputs=[current_image_pil, image_history, current_image_display] |
|
) |
|
|
|
demo.launch(share=True) |
|
|
|
|
|
if __name__ == "__main__": |
|
gradio_interface() |
|
|