Sutirtha's picture
Update app.py
29f4bdf verified
import gradio as gr
from PIL import Image
import numpy as np
import cv2
from lang_sam import LangSAM
from color_matcher import ColorMatcher
from color_matcher.normalizer import Normalizer
import torch
import warnings
# Suppress specific warnings if desired
warnings.filterwarnings("ignore", category=UserWarning)
# Device configuration: Use CUDA if available, else CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load the LangSAM model
model = LangSAM() # Use the default model or specify custom checkpoint if necessary
# Note: Removed model.to(device) since LangSAM does not support it
def extract_masks(image_pil, prompts):
"""
Extracts masks for each prompt using the LangSAM model.
Args:
image_pil (PIL.Image): The input image.
prompts (str): Comma-separated prompts for segmentation.
Returns:
dict: A dictionary mapping each prompt to its corresponding binary mask.
"""
prompts_list = [p.strip() for p in prompts.split(',') if p.strip()]
masks_dict = {}
with torch.no_grad(): # Disable gradient computation for inference
for prompt in prompts_list:
# Ensure the model uses the correct device internally
masks, boxes, phrases, logits = model.predict(image_pil, prompt)
if masks is not None and len(masks) > 0:
# Move masks to CPU and convert to numpy
masks_np = masks[0].cpu().numpy()
mask = (masks_np > 0).astype(np.uint8) * 255 # Binary mask
masks_dict[prompt] = mask
return masks_dict
def apply_color_matching(source_img_np, ref_img_np):
"""
Applies color matching from the reference image to the source image.
Args:
source_img_np (numpy.ndarray): Source image in NumPy array format.
ref_img_np (numpy.ndarray): Reference image in NumPy array format.
Returns:
numpy.ndarray: Color-matched image.
"""
# Initialize ColorMatcher
cm = ColorMatcher()
# Apply color matching
img_res = cm.transfer(src=source_img_np, ref=ref_img_np, method='mkl')
# Normalize the result
img_res = Normalizer(img_res).uint8_norm()
return img_res
def process_image(current_image_pil, selected_prompt, masks_dict, replacement_image_pil, color_ref_image_pil, apply_replacement, apply_color_grading, apply_color_to_full_image, blending_amount, image_history):
"""
Processes the image by applying replacement and/or color grading based on user input.
Args:
current_image_pil (PIL.Image): The current image to be edited.
selected_prompt (str): The selected segment prompt.
masks_dict (dict): Dictionary of masks for each prompt.
replacement_image_pil (PIL.Image): Replacement image (optional).
color_ref_image_pil (PIL.Image): Color reference image (optional).
apply_replacement (bool): Flag to apply replacement.
apply_color_grading (bool): Flag to apply color grading.
apply_color_to_full_image (bool): Flag to apply color grading to the full image.
blending_amount (int): Amount for blending the mask.
image_history (list): History of images for undo functionality.
Returns:
tuple: Updated image, status message, updated history, and image display.
"""
# Check if current_image_pil is None
if current_image_pil is None:
return None, "No current image to edit.", image_history, None
if not apply_replacement and not apply_color_grading:
return current_image_pil, "No changes applied. Please select at least one operation.", image_history, current_image_pil
if apply_replacement and replacement_image_pil is None:
return current_image_pil, "Replacement image not provided.", image_history, current_image_pil
if apply_color_grading and color_ref_image_pil is None:
return current_image_pil, "Color reference image not provided.", image_history, current_image_pil
# Get the mask from masks_dict
if selected_prompt not in masks_dict:
return current_image_pil, f"No mask available for selected segment: {selected_prompt}", image_history, current_image_pil
mask = masks_dict[selected_prompt]
# Save current image to history for undo
if image_history is None:
image_history = []
image_history.append(current_image_pil.copy())
# Proceed with replacement or color matching
current_image_np = np.array(current_image_pil)
result_image_np = current_image_np.copy()
# Create mask with blending
# First, normalize mask to range [0,1]
mask_normalized = mask.astype(np.float32) / 255.0
# Apply blending by blurring the mask
if blending_amount > 0:
# The kernel size for blurring; larger blending_amount means more blur
kernel_size = int(blending_amount)
if kernel_size % 2 == 0:
kernel_size += 1 # Kernel size must be odd
mask_blurred = cv2.GaussianBlur(mask_normalized, (kernel_size, kernel_size), 0)
else:
mask_blurred = mask_normalized
# Convert mask to 3 channels
mask_blurred_3ch = cv2.merge([mask_blurred, mask_blurred, mask_blurred])
# If apply replacement
if apply_replacement:
# Resize replacement image to match current image
replacement_image_resized = replacement_image_pil.resize(current_image_pil.size)
replacement_image_np = np.array(replacement_image_resized)
# Blend the replacement image with the current image using the mask
result_image_np = (replacement_image_np.astype(np.float32) * mask_blurred_3ch + result_image_np.astype(np.float32) * (1 - mask_blurred_3ch)).astype(np.uint8)
# If apply color grading
if apply_color_grading:
# Convert color reference image to numpy
color_ref_image_np = np.array(color_ref_image_pil)
if apply_color_to_full_image:
# Apply color matching to the full image
color_matched_image = apply_color_matching(result_image_np, color_ref_image_np)
result_image_np = color_matched_image
else:
# Apply color matching only to the masked area
# Extract the masked area
masked_region = (result_image_np.astype(np.float32) * mask_blurred_3ch).astype(np.uint8)
# Apply color matching
color_matched_region = apply_color_matching(masked_region, color_ref_image_np)
# Blend the color matched region back into the result image
result_image_np = (color_matched_region.astype(np.float32) * mask_blurred_3ch + result_image_np.astype(np.float32) * (1 - mask_blurred_3ch)).astype(np.uint8)
# Convert result back to PIL Image
result_image_pil = Image.fromarray(result_image_np)
# Update current_image_pil
current_image_pil = result_image_pil
return current_image_pil, f"Applied changes to '{selected_prompt}'", image_history, current_image_pil
def undo(image_history):
"""
Undoes the last image edit by reverting to the previous image in the history.
Args:
image_history (list): History of images.
Returns:
tuple: Reverted image, updated history, and image display.
"""
if image_history and len(image_history) > 1:
# Pop the last image
image_history.pop()
# Return the previous image
current_image_pil = image_history[-1]
return current_image_pil, image_history, current_image_pil
elif image_history and len(image_history) == 1:
current_image_pil = image_history[0]
return current_image_pil, image_history, current_image_pil
else:
# Cannot undo
return None, [], None
def gradio_interface():
"""
Defines and launches the Gradio interface for continuous image editing.
"""
with gr.Blocks() as demo:
# Define the state variables
image_history = gr.State([])
current_image_pil = gr.State(None)
masks_dict = gr.State({}) # Store masks for each prompt
gr.Markdown("## Continuous Image Editing with LangSAM")
with gr.Row():
with gr.Column():
initial_image = gr.Image(type="pil", label="Upload Image")
prompts = gr.Textbox(lines=1, placeholder="Enter prompts separated by commas (e.g., sky, grass)", label="Prompts")
segment_button = gr.Button("Segment Image")
segment_dropdown = gr.Dropdown(label="Select Segment", choices=[], allow_custom_value=True)
replacement_image = gr.Image(type="pil", label="Replacement Image (optional)")
color_ref_image = gr.Image(type="pil", label="Color Reference Image (optional)")
apply_replacement = gr.Checkbox(label="Apply Replacement", value=False)
apply_color_grading = gr.Checkbox(label="Apply Color Grading", value=False)
apply_color_to_full_image = gr.Checkbox(label="Apply Color Correction to Full Image", value=False)
blending_amount = gr.Slider(minimum=0, maximum=500, step=1, label="Blending Amount", value=150)
apply_button = gr.Button("Apply Changes")
undo_button = gr.Button("Undo")
with gr.Column():
current_image_display = gr.Image(type="pil", label="Edited Image", interactive=False)
status = gr.Textbox(lines=2, interactive=False, label="Status")
def initialize_image(initial_image_pil):
"""
Initializes the image history and sets up the initial image.
Args:
initial_image_pil (PIL.Image): The uploaded initial image.
Returns:
tuple: Updated states and status message.
"""
if initial_image_pil is not None:
image_history = [initial_image_pil]
current_image_pil = initial_image_pil
return current_image_pil, image_history, initial_image_pil, {}, gr.update(choices=[], value=None), "Image loaded."
else:
return None, [], None, {}, gr.update(choices=[], value=None), "No image loaded."
# When the initial image is uploaded, initialize the image history
initial_image.upload(
fn=initialize_image,
inputs=initial_image,
outputs=[current_image_pil, image_history, current_image_display, masks_dict, segment_dropdown, status]
)
# Segment button click
def segment_image_wrapper(current_image_pil, prompts):
"""
Handles the segmentation of the image based on user prompts.
Args:
current_image_pil (PIL.Image): The current image.
prompts (str): Comma-separated prompts.
Returns:
tuple: Status message, updated masks, and dropdown updates.
"""
if current_image_pil is None:
return "No image uploaded.", {}, gr.update(choices=[], value=None)
masks = extract_masks(current_image_pil, prompts)
if not masks:
return "No masks detected for the given prompts.", {}, gr.update(choices=[], value=None)
dropdown_choices = list(masks.keys())
return "Segmentation completed.", masks, gr.update(choices=dropdown_choices, value=dropdown_choices[0])
segment_button.click(
fn=segment_image_wrapper,
inputs=[current_image_pil, prompts],
outputs=[status, masks_dict, segment_dropdown]
)
# Apply button click
apply_button.click(
fn=process_image,
inputs=[
current_image_pil,
segment_dropdown,
masks_dict,
replacement_image,
color_ref_image,
apply_replacement,
apply_color_grading,
apply_color_to_full_image,
blending_amount,
image_history
],
outputs=[current_image_pil, status, image_history, current_image_display]
)
# Undo button click
undo_button.click(
fn=undo,
inputs=image_history,
outputs=[current_image_pil, image_history, current_image_display]
)
demo.launch(share=True)
# Run the Gradio Interface
if __name__ == "__main__":
gradio_interface()