|
import gradio as gr |
|
from PIL import Image |
|
import numpy as np |
|
import cv2 |
|
from lang_sam import LangSAM |
|
from color_matcher import ColorMatcher |
|
from color_matcher.normalizer import Normalizer |
|
import torch |
|
|
|
|
|
model = LangSAM() |
|
|
|
def extract_mask(image_pil, text_prompt): |
|
masks, boxes, phrases, logits = model.predict(image_pil, text_prompt) |
|
masks_np = masks[0].cpu().numpy() |
|
mask = (masks_np > 0).astype(np.uint8) * 255 |
|
return mask |
|
|
|
def apply_color_matching(source_img_np, ref_img_np): |
|
|
|
cm = ColorMatcher() |
|
|
|
|
|
img_res = cm.transfer(src=source_img_np, ref=ref_img_np, method='mkl') |
|
|
|
|
|
img_res = Normalizer(img_res).uint8_norm() |
|
|
|
return img_res |
|
|
|
def process_image(current_image_pil, prompt, replacement_image_pil, color_ref_image_pil, apply_replacement, apply_color_grading, blending_amount, image_history): |
|
|
|
if current_image_pil is None: |
|
return None, "No current image to edit.", image_history, None |
|
|
|
if not apply_replacement and not apply_color_grading: |
|
return current_image_pil, "No changes applied. Please select at least one operation.", image_history, current_image_pil |
|
|
|
if apply_replacement and replacement_image_pil is None: |
|
return current_image_pil, "Replacement image not provided.", image_history, current_image_pil |
|
|
|
if apply_color_grading and color_ref_image_pil is None: |
|
return current_image_pil, "Color reference image not provided.", image_history, current_image_pil |
|
|
|
|
|
if image_history is None: |
|
image_history = [] |
|
image_history.append(current_image_pil.copy()) |
|
|
|
|
|
mask = extract_mask(current_image_pil, prompt) |
|
|
|
|
|
if mask.sum() == 0: |
|
return current_image_pil, f"No mask detected for prompt: {prompt}", image_history, current_image_pil |
|
|
|
|
|
current_image_np = np.array(current_image_pil) |
|
result_image_np = current_image_np.copy() |
|
|
|
|
|
|
|
mask_normalized = mask.astype(np.float32) / 255.0 |
|
|
|
|
|
if blending_amount > 0: |
|
|
|
kernel_size = int(blending_amount) |
|
if kernel_size % 2 == 0: |
|
kernel_size += 1 |
|
mask_blurred = cv2.GaussianBlur(mask_normalized, (kernel_size, kernel_size), 0) |
|
else: |
|
mask_blurred = mask_normalized |
|
|
|
|
|
mask_blurred_3ch = cv2.merge([mask_blurred, mask_blurred, mask_blurred]) |
|
|
|
|
|
if apply_replacement: |
|
|
|
|
|
y_indices, x_indices = np.where(mask > 0) |
|
if y_indices.size == 0 or x_indices.size == 0: |
|
|
|
return current_image_pil, f"No mask detected for prompt: {prompt}", image_history, current_image_pil |
|
y_min, y_max = y_indices.min(), y_indices.max() |
|
x_min, x_max = x_indices.min(), x_indices.max() |
|
|
|
|
|
mask_height = y_max - y_min + 1 |
|
mask_width = x_max - x_min + 1 |
|
|
|
|
|
replacement_image_resized = replacement_image_pil.resize((mask_width, mask_height)) |
|
replacement_image_np = np.array(replacement_image_resized) |
|
|
|
|
|
mask_roi = mask_blurred[y_min:y_max+1, x_min:x_max+1] |
|
mask_roi_3ch = cv2.merge([mask_roi, mask_roi, mask_roi]) |
|
|
|
|
|
region_to_replace = result_image_np[y_min:y_max+1, x_min:x_max+1] |
|
blended_region = (replacement_image_np.astype(np.float32) * mask_roi_3ch + region_to_replace.astype(np.float32) * (1 - mask_roi_3ch)).astype(np.uint8) |
|
result_image_np[y_min:y_max+1, x_min:x_max+1] = blended_region |
|
|
|
|
|
if apply_color_grading: |
|
|
|
masked_region = (result_image_np.astype(np.float32) * mask_blurred_3ch).astype(np.uint8) |
|
|
|
color_ref_image_np = np.array(color_ref_image_pil) |
|
|
|
color_matched_region = apply_color_matching(masked_region, color_ref_image_np) |
|
|
|
result_image_np = (color_matched_region.astype(np.float32) * mask_blurred_3ch + result_image_np.astype(np.float32) * (1 - mask_blurred_3ch)).astype(np.uint8) |
|
|
|
|
|
result_image_pil = Image.fromarray(result_image_np) |
|
|
|
|
|
current_image_pil = result_image_pil |
|
|
|
return current_image_pil, f"Applied changes for prompt: {prompt}", image_history, current_image_pil |
|
|
|
def undo(image_history): |
|
if image_history and len(image_history) > 1: |
|
|
|
image_history.pop() |
|
|
|
current_image_pil = image_history[-1] |
|
return current_image_pil, image_history, current_image_pil |
|
elif image_history and len(image_history) == 1: |
|
current_image_pil = image_history[0] |
|
return current_image_pil, image_history, current_image_pil |
|
else: |
|
|
|
return None, [], None |
|
|
|
def gradio_interface(): |
|
with gr.Blocks() as demo: |
|
|
|
image_history = gr.State([]) |
|
current_image_pil = gr.State(None) |
|
|
|
gr.Markdown("## Continuous Image Editing with LangSAM") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
initial_image = gr.Image(type="pil", label="Upload Image") |
|
prompt = gr.Textbox(lines=1, placeholder="Enter prompt for object detection", label="Prompt") |
|
replacement_image = gr.Image(type="pil", label="Replacement Image (optional)") |
|
color_ref_image = gr.Image(type="pil", label="Color Reference Image (optional)") |
|
apply_replacement = gr.Checkbox(label="Apply Replacement", value=False) |
|
apply_color_grading = gr.Checkbox(label="Apply Color Grading", value=False) |
|
blending_amount = gr.Slider(minimum=0, maximum=50, step=1, label="Blending Amount", value=0) |
|
apply_button = gr.Button("Apply Changes") |
|
undo_button = gr.Button("Undo") |
|
with gr.Column(): |
|
current_image_display = gr.Image(type="pil", label="Edited Image", interactive=False) |
|
status = gr.Textbox(lines=2, interactive=False, label="Status") |
|
|
|
def initialize_image(initial_image_pil): |
|
|
|
if initial_image_pil is not None: |
|
image_history = [initial_image_pil] |
|
current_image_pil = initial_image_pil |
|
return current_image_pil, image_history, initial_image_pil |
|
else: |
|
return None, [], None |
|
|
|
|
|
initial_image.upload(fn=initialize_image, inputs=initial_image, outputs=[current_image_pil, image_history, current_image_display]) |
|
|
|
|
|
apply_button.click(fn=process_image, |
|
inputs=[current_image_pil, prompt, replacement_image, color_ref_image, apply_replacement, apply_color_grading, blending_amount, image_history], |
|
outputs=[current_image_pil, status, image_history, current_image_display]) |
|
|
|
|
|
undo_button.click(fn=undo, inputs=image_history, outputs=[current_image_pil, image_history, current_image_display]) |
|
|
|
demo.launch(share=True) |
|
|
|
|
|
if __name__ == "__main__": |
|
gradio_interface() |
|
|