Spaces:
Sleeping
Sleeping
File size: 6,563 Bytes
b795d51 892cf9d b795d51 9c7b939 a68f3d0 b795d51 9c7b939 892cf9d b795d51 9c7b939 b795d51 9c7b939 b795d51 9c7b939 b795d51 892cf9d b795d51 892cf9d 9c7b939 892cf9d 9c7b939 892cf9d 9c7b939 892cf9d 9c7b939 892cf9d 9c7b939 892cf9d 9c7b939 892cf9d 9c7b939 892cf9d b795d51 892cf9d b795d51 892cf9d e9ef3b4 892cf9d b795d51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import gradio as gr
from PIL import Image
import numpy as np
import cv2
from lang_sam import LangSAM
from color_matcher import ColorMatcher
from color_matcher.normalizer import Normalizer
import torch
# Load the LangSAM model
model = LangSAM() # Use the default model or specify custom checkpoint if necessary
def extract_mask(image_pil, text_prompt):
masks, boxes, phrases, logits = model.predict(image_pil, text_prompt)
masks_np = masks[0].cpu().numpy()
mask = (masks_np > 0).astype(np.uint8) * 255 # Binary mask
return mask
def apply_color_matching(source_img_np, ref_img_np):
# Initialize ColorMatcher
cm = ColorMatcher()
# Apply color matching
img_res = cm.transfer(src=source_img_np, ref=ref_img_np, method='mkl')
# Normalize the result
img_res = Normalizer(img_res).uint8_norm()
return img_res
def process_image(current_image_pil, prompt, replacement_image_pil, color_ref_image_pil, image_history):
# Check if current_image_pil is None
if current_image_pil is None:
return None, "No current image to edit.", image_history, None
# Save current image to history for undo
if image_history is None:
image_history = []
image_history.append(current_image_pil.copy())
# Extract mask
mask = extract_mask(current_image_pil, prompt)
# Check if mask is valid
if mask.sum() == 0:
return current_image_pil, f"No mask detected for prompt: {prompt}", image_history, current_image_pil
# Proceed with replacement or color matching
current_image_np = np.array(current_image_pil)
mask_3ch = cv2.merge([mask, mask, mask])
result_image_np = current_image_np.copy()
# If replacement image is provided
if replacement_image_pil is not None:
# Resize replacement image to fit the mask area
# Get bounding box of the mask
y_indices, x_indices = np.where(mask > 0)
if y_indices.size == 0 or x_indices.size == 0:
# No mask detected
return current_image_pil, f"No mask detected for prompt: {prompt}", image_history, current_image_pil
y_min, y_max = y_indices.min(), y_indices.max()
x_min, x_max = x_indices.min(), x_indices.max()
# Extract the region of interest
mask_height = y_max - y_min + 1
mask_width = x_max - x_min + 1
# Resize replacement image to fit mask area
replacement_image_resized = replacement_image_pil.resize((mask_width, mask_height))
replacement_image_np = np.array(replacement_image_resized)
# Create a mask for the ROI
mask_roi = mask[y_min:y_max+1, x_min:x_max+1]
mask_roi_3ch = cv2.merge([mask_roi, mask_roi, mask_roi])
# Replace the masked area with the replacement image
result_image_np[y_min:y_max+1, x_min:x_max+1] = np.where(mask_roi_3ch > 0, replacement_image_np, result_image_np[y_min:y_max+1, x_min:x_max+1])
# If color reference image is provided
if color_ref_image_pil is not None:
# Extract the masked area
masked_region = cv2.bitwise_and(result_image_np, mask_3ch)
# Convert color reference image to numpy
color_ref_image_np = np.array(color_ref_image_pil)
# Apply color matching
color_matched_region = apply_color_matching(masked_region, color_ref_image_np)
# Combine the color matched region back into the result image
result_image_np = np.where(mask_3ch > 0, color_matched_region, result_image_np)
# Convert result back to PIL Image
result_image_pil = Image.fromarray(result_image_np)
# Update current_image_pil
current_image_pil = result_image_pil
return current_image_pil, f"Applied changes for prompt: {prompt}", image_history, current_image_pil
def undo(image_history):
if image_history and len(image_history) > 1:
# Pop the last image
image_history.pop()
# Return the previous image
current_image_pil = image_history[-1]
return current_image_pil, image_history, current_image_pil
elif image_history and len(image_history) == 1:
current_image_pil = image_history[0]
return current_image_pil, image_history, current_image_pil
else:
# Cannot undo
return None, [], None
def gradio_interface():
with gr.Blocks() as demo:
# Define the state variables
image_history = gr.State([])
current_image_pil = gr.State(None)
gr.Markdown("## Continuous Image Editing with LangSAM")
with gr.Row():
with gr.Column():
initial_image = gr.Image(type="pil", label="Upload Image")
prompt = gr.Textbox(lines=1, placeholder="Enter prompt for object detection", label="Prompt")
replacement_image = gr.Image(type="pil", label="Replacement Image (optional)")
color_ref_image = gr.Image(type="pil", label="Color Reference Image (optional)")
apply_button = gr.Button("Apply Changes")
undo_button = gr.Button("Undo")
with gr.Column():
current_image_display = gr.Image(type="pil", label="Edited Image", interactive=False)
status = gr.Textbox(lines=2, interactive=False, label="Status")
def initialize_image(initial_image_pil):
# Initialize image history with the initial image
if initial_image_pil is not None:
image_history = [initial_image_pil]
current_image_pil = initial_image_pil
return current_image_pil, image_history, initial_image_pil
else:
return None, [], None
# When the initial image is uploaded, initialize the image history
initial_image.upload(fn=initialize_image, inputs=initial_image, outputs=[current_image_pil, image_history, current_image_display])
# Apply button click
apply_button.click(fn=process_image,
inputs=[current_image_pil, prompt, replacement_image, color_ref_image, image_history],
outputs=[current_image_pil, status, image_history, current_image_display])
# Undo button click
undo_button.click(fn=undo, inputs=image_history, outputs=[current_image_pil, image_history, current_image_display])
demo.launch(share=True)
# Run the Gradio Interface
if __name__ == "__main__":
gradio_interface()
|