Sutirtha commited on
Commit
a68f3d0
·
verified ·
1 Parent(s): a0852f6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -5,6 +5,7 @@ import cv2
5
  from lang_sam import LangSAM
6
  from color_matcher import ColorMatcher
7
  from color_matcher.normalizer import Normalizer
 
8
 
9
  # Load the LangSAM model
10
  model = LangSAM() # Use the default model or specify custom checkpoint: LangSAM("<model_type>", "<path/to/checkpoint>")
@@ -26,9 +27,12 @@ def apply_color_matching(source_img_np, ref_img_np):
26
  def extract_and_color_match_sky(image_pil, reference_image_pil, text_prompt="sky"):
27
  # Use LangSAM to predict the mask for the sky
28
  masks, boxes, phrases, logits = model.predict(image_pil, text_prompt)
29
-
 
 
 
30
  # Convert the mask to a binary format and create a mask image
31
- sky_mask = masks[0].astype(np.uint8) * 255
32
 
33
  # Convert PIL image to numpy array for processing
34
  img_np = np.array(image_pil)
@@ -71,7 +75,7 @@ def gradio_interface():
71
  outputs = gr.Image(type="pil", label="Resulting Image")
72
 
73
  # Launch Gradio app
74
- gr.Interface(fn=process_image, inputs=inputs, outputs=outputs, title="Sky Extraction and Color Matching").launch()
75
 
76
  # Run the Gradio Interface
77
  if __name__ == "__main__":
 
5
  from lang_sam import LangSAM
6
  from color_matcher import ColorMatcher
7
  from color_matcher.normalizer import Normalizer
8
+ import torch
9
 
10
  # Load the LangSAM model
11
  model = LangSAM() # Use the default model or specify custom checkpoint: LangSAM("<model_type>", "<path/to/checkpoint>")
 
27
  def extract_and_color_match_sky(image_pil, reference_image_pil, text_prompt="sky"):
28
  # Use LangSAM to predict the mask for the sky
29
  masks, boxes, phrases, logits = model.predict(image_pil, text_prompt)
30
+
31
+ # Ensure masks is converted from tensor to NumPy
32
+ masks_np = masks[0].cpu().numpy() # Convert the tensor to NumPy array
33
+
34
  # Convert the mask to a binary format and create a mask image
35
+ sky_mask = (masks_np > 0).astype(np.uint8) * 255 # Ensure it's a binary mask
36
 
37
  # Convert PIL image to numpy array for processing
38
  img_np = np.array(image_pil)
 
75
  outputs = gr.Image(type="pil", label="Resulting Image")
76
 
77
  # Launch Gradio app
78
+ gr.Interface(fn=process_image, inputs=inputs, outputs=outputs, title="Sky Extraction and Color Matching").launch(share=True)
79
 
80
  # Run the Gradio Interface
81
  if __name__ == "__main__":