Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import cv2
|
|
5 |
from lang_sam import LangSAM
|
6 |
from color_matcher import ColorMatcher
|
7 |
from color_matcher.normalizer import Normalizer
|
|
|
8 |
|
9 |
# Load the LangSAM model
|
10 |
model = LangSAM() # Use the default model or specify custom checkpoint: LangSAM("<model_type>", "<path/to/checkpoint>")
|
@@ -26,9 +27,12 @@ def apply_color_matching(source_img_np, ref_img_np):
|
|
26 |
def extract_and_color_match_sky(image_pil, reference_image_pil, text_prompt="sky"):
|
27 |
# Use LangSAM to predict the mask for the sky
|
28 |
masks, boxes, phrases, logits = model.predict(image_pil, text_prompt)
|
29 |
-
|
|
|
|
|
|
|
30 |
# Convert the mask to a binary format and create a mask image
|
31 |
-
sky_mask =
|
32 |
|
33 |
# Convert PIL image to numpy array for processing
|
34 |
img_np = np.array(image_pil)
|
@@ -71,7 +75,7 @@ def gradio_interface():
|
|
71 |
outputs = gr.Image(type="pil", label="Resulting Image")
|
72 |
|
73 |
# Launch Gradio app
|
74 |
-
gr.Interface(fn=process_image, inputs=inputs, outputs=outputs, title="Sky Extraction and Color Matching").launch()
|
75 |
|
76 |
# Run the Gradio Interface
|
77 |
if __name__ == "__main__":
|
|
|
5 |
from lang_sam import LangSAM
|
6 |
from color_matcher import ColorMatcher
|
7 |
from color_matcher.normalizer import Normalizer
|
8 |
+
import torch
|
9 |
|
10 |
# Load the LangSAM model
|
11 |
model = LangSAM() # Use the default model or specify custom checkpoint: LangSAM("<model_type>", "<path/to/checkpoint>")
|
|
|
27 |
def extract_and_color_match_sky(image_pil, reference_image_pil, text_prompt="sky"):
|
28 |
# Use LangSAM to predict the mask for the sky
|
29 |
masks, boxes, phrases, logits = model.predict(image_pil, text_prompt)
|
30 |
+
|
31 |
+
# Ensure masks is converted from tensor to NumPy
|
32 |
+
masks_np = masks[0].cpu().numpy() # Convert the tensor to NumPy array
|
33 |
+
|
34 |
# Convert the mask to a binary format and create a mask image
|
35 |
+
sky_mask = (masks_np > 0).astype(np.uint8) * 255 # Ensure it's a binary mask
|
36 |
|
37 |
# Convert PIL image to numpy array for processing
|
38 |
img_np = np.array(image_pil)
|
|
|
75 |
outputs = gr.Image(type="pil", label="Resulting Image")
|
76 |
|
77 |
# Launch Gradio app
|
78 |
+
gr.Interface(fn=process_image, inputs=inputs, outputs=outputs, title="Sky Extraction and Color Matching").launch(share=True)
|
79 |
|
80 |
# Run the Gradio Interface
|
81 |
if __name__ == "__main__":
|