Update app.py
Browse files
app.py
CHANGED
@@ -1,200 +1,3 @@
|
|
1 |
-
# import streamlit as st
|
2 |
-
# import os
|
3 |
-
# import pandas as pd
|
4 |
-
# import random
|
5 |
-
# from os.path import join
|
6 |
-
# from src import preprocess_and_load_df, load_agent, ask_agent, decorate_with_code, show_response, get_from_user, load_smart_df, ask_question
|
7 |
-
# from dotenv import load_dotenv
|
8 |
-
# from langchain_groq.chat_models import ChatGroq
|
9 |
-
|
10 |
-
# load_dotenv("Groq.txt")
|
11 |
-
# Groq_Token = os.environ["GROQ_API_KEY"]
|
12 |
-
# models = {"llama3":"llama3-70b-8192","mixtral": "mixtral-8x7b-32768", "llama2": "llama2-70b-4096", "gemma": "gemma-7b-it"}
|
13 |
-
|
14 |
-
# self_path = os.path.dirname(os.path.abspath(__file__))
|
15 |
-
|
16 |
-
# # Using HTML and CSS to center the title
|
17 |
-
# st.write(
|
18 |
-
# """
|
19 |
-
# <style>
|
20 |
-
# .title {
|
21 |
-
# text-align: center;
|
22 |
-
# color: #17becf;
|
23 |
-
# }
|
24 |
-
# """,
|
25 |
-
# unsafe_allow_html=True,
|
26 |
-
# )
|
27 |
-
|
28 |
-
# # Displaying the centered title
|
29 |
-
# st.markdown("<h2 class='title'>VayuBuddy</h2>", unsafe_allow_html=True)
|
30 |
-
|
31 |
-
# # os.environ["PANDASAI_API_KEY"] = "$2a$10$gbmqKotzJOnqa7iYOun8eO50TxMD/6Zw1pLI2JEoqncwsNx4XeBS2"
|
32 |
-
|
33 |
-
# # with open(join(self_path, "context1.txt")) as f:
|
34 |
-
# # context = f.read().strip()
|
35 |
-
|
36 |
-
# # agent = load_agent(join(self_path, "app_trial_1.csv"), context)
|
37 |
-
# # df = preprocess_and_load_df(join(self_path, "Data.csv"))
|
38 |
-
# # inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
|
39 |
-
# # inference_server = "https://api-inference.huggingface.co/models/codellama/CodeLlama-13b-hf"
|
40 |
-
# # inference_server = "https://api-inference.huggingface.co/models/pandasai/bamboo-llm"
|
41 |
-
|
42 |
-
# model_name = st.sidebar.selectbox("Select LLM:", ["llama3","mixtral", "llama2", "gemma"])
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
# questions = ('Custom Prompt',
|
49 |
-
# 'Plot the monthly average PM2.5 for the year 2023.',
|
50 |
-
# 'Which month has the highest average PM2.5 overall?',
|
51 |
-
# 'Which month has the highest PM2.5 overall?',
|
52 |
-
# 'Which month has the highest average PM2.5 in 2023 for Mumbai?',
|
53 |
-
# 'Plot and compare monthly timeseries of pollution for Mumbai and Bengaluru.',
|
54 |
-
# 'Plot the yearly average PM2.5.',
|
55 |
-
# 'Plot the monthly average PM2.5 of Delhi',
|
56 |
-
# 'Mumbai and Bengaluru for the year 2022.',
|
57 |
-
# 'Which month has the highest pollution?',
|
58 |
-
# 'Plot the monthly average PM2.5 of Delhi for the year 2022.',
|
59 |
-
# 'Which city has the highest PM2.5 level in July 2022?',
|
60 |
-
# 'Plot and compare monthly timeseries of PM2.5 for Mumbai and Bengaluru.',
|
61 |
-
# 'Plot and compare the monthly average PM2.5 of Delhi, Mumbai and Bengaluru for the year 2022.',
|
62 |
-
# 'Plot the monthly average PM2.5.',
|
63 |
-
# 'Plot the monthly average PM10 for the year 2023.',
|
64 |
-
# 'Which month has the highest PM2.5?',
|
65 |
-
# 'Plot the monthly average PM2.5 of Delhi for the year 2022.',
|
66 |
-
# 'Plot the monthly average PM2.5 of Bengaluru for the year 2022.',
|
67 |
-
# 'Plot the monthly average PM2.5 of Mumbai for the year 2022.',
|
68 |
-
# 'Which state has the highest average PM2.5?',
|
69 |
-
# 'Plot monthly PM2.5 in Gujarat for 2023.',
|
70 |
-
# 'What is the name of the month with the highest average PM2.5 overall?')
|
71 |
-
|
72 |
-
# waiting_lines = ("Thinking...", "Just a moment...", "Let me think...", "Working on it...", "Processing...", "Hold on...", "One moment...", "On it...")
|
73 |
-
|
74 |
-
# # agent = load_agent(df, context="", inference_server=inference_server, name=model_name)
|
75 |
-
|
76 |
-
# # Initialize chat history
|
77 |
-
# if "responses" not in st.session_state:
|
78 |
-
# st.session_state.responses = []
|
79 |
-
|
80 |
-
# # Display chat responses from history on app rerun
|
81 |
-
# for response in st.session_state.responses:
|
82 |
-
# if not response["no_response"]:
|
83 |
-
# show_response(st, response)
|
84 |
-
|
85 |
-
# show = True
|
86 |
-
|
87 |
-
# prompt = st.sidebar.selectbox("Select a Prompt:", questions)
|
88 |
-
|
89 |
-
# # add a note "select custom prompt to ask your own question"
|
90 |
-
|
91 |
-
|
92 |
-
# if prompt == 'Custom Prompt':
|
93 |
-
# show = False
|
94 |
-
# # React to user input
|
95 |
-
# prompt = st.chat_input("Ask me anything about air quality!", key=10)
|
96 |
-
# if prompt:
|
97 |
-
# show = True
|
98 |
-
|
99 |
-
|
100 |
-
# if show:
|
101 |
-
|
102 |
-
# # Add user input to chat history
|
103 |
-
# response = get_from_user(prompt)
|
104 |
-
# response["no_response"] = False
|
105 |
-
# st.session_state.responses.append(response)
|
106 |
-
|
107 |
-
# # Display user input
|
108 |
-
# show_response(st, response)
|
109 |
-
|
110 |
-
# no_response = False
|
111 |
-
|
112 |
-
# # select random waiting line
|
113 |
-
# with st.spinner(random.choice(waiting_lines)):
|
114 |
-
# ran = False
|
115 |
-
# for i in range(5):
|
116 |
-
# llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0.1)
|
117 |
-
|
118 |
-
# df_check = pd.read_csv("Data.csv")
|
119 |
-
# df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
|
120 |
-
# df_check = df_check.head(5)
|
121 |
-
|
122 |
-
# new_line = "\n"
|
123 |
-
|
124 |
-
# template = f"""```python
|
125 |
-
# import pandas as pd
|
126 |
-
# import matplotlib.pyplot as plt
|
127 |
-
|
128 |
-
# df = pd.read_csv("Data.csv")
|
129 |
-
# df["Timestamp"] = pd.to_datetime(df["Timestamp"])
|
130 |
-
|
131 |
-
# # df.dtypes
|
132 |
-
# {new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))}
|
133 |
-
|
134 |
-
# # {prompt.strip()}
|
135 |
-
# # <your code here>
|
136 |
-
# ```
|
137 |
-
# """
|
138 |
-
|
139 |
-
# query = f"""I have a pandas dataframe data of PM2.5 and PM10.
|
140 |
-
# * Frequency of data is daily.
|
141 |
-
# * `pollution` generally means `PM2.5`.
|
142 |
-
# * You already have df, so don't read the csv file
|
143 |
-
# * Don't print, but save result in a variable `answer` and make it global.
|
144 |
-
# * Unless explicitly mentioned, don't consider the result as a plot.
|
145 |
-
# * PM2.5 guidelines: India: 60, WHO: 15.
|
146 |
-
# * PM10 guidelines: India: 100, WHO: 50.
|
147 |
-
# * If result is a plot, show the India and WHO guidelines in the plot.
|
148 |
-
# * If result is a plot make it in tight layout, save it and save path in `answer`. Example: `answer='plot.png'`
|
149 |
-
# * If result is a plot, rotate x-axis tick labels by 45 degrees,
|
150 |
-
# * If result is not a plot, save it as a string in `answer`. Example: `answer='The city is Mumbai'`
|
151 |
-
# * Whenever you do any sort of aggregation, report the corresponding standard deviation, standard error and the number of data points for that aggregation.
|
152 |
-
# * Whenever you're reporting a floating point number, round it to 2 decimal places.
|
153 |
-
# * Always report the unit of the data. Example: `The average PM2.5 is 45.67 µg/m³`
|
154 |
-
|
155 |
-
|
156 |
-
# Complete the following code.
|
157 |
-
|
158 |
-
# {template}
|
159 |
-
|
160 |
-
# """
|
161 |
-
|
162 |
-
# answer = llm.invoke(query)
|
163 |
-
# code = f"""
|
164 |
-
# {template.split("```python")[1].split("```")[0]}
|
165 |
-
# {answer.content.split("```python")[1].split("```")[0]}
|
166 |
-
# """
|
167 |
-
# # update variable `answer` when code is executed
|
168 |
-
# try:
|
169 |
-
# exec(code)
|
170 |
-
# ran = True
|
171 |
-
# no_response = False
|
172 |
-
# except Exception as e:
|
173 |
-
# no_response = True
|
174 |
-
# exception = e
|
175 |
-
|
176 |
-
# response = {"role": "assistant", "content": answer, "gen_code": code, "ex_code": code, "last_prompt": prompt, "no_response": no_response}
|
177 |
-
|
178 |
-
# # Get response from agent
|
179 |
-
# # response = ask_question(model_name=model_name, question=prompt)
|
180 |
-
# # response = ask_agent(agent, prompt)
|
181 |
-
|
182 |
-
# if ran:
|
183 |
-
# break
|
184 |
-
|
185 |
-
# if no_response:
|
186 |
-
# st.error(f"Failed to generate right output due to the following error:\n\n{exception}")
|
187 |
-
# # Add agent response to chat history
|
188 |
-
# st.session_state.responses.append(response)
|
189 |
-
|
190 |
-
# # Display agent response
|
191 |
-
# if not no_response:
|
192 |
-
# show_response(st, response)
|
193 |
-
|
194 |
-
# del prompt
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
import streamlit as st
|
199 |
import os
|
200 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import pandas as pd
|