# import streamlit as st | |
# import os | |
# import pandas as pd | |
# import random | |
# from os.path import join | |
# from src import preprocess_and_load_df, load_agent, ask_agent, decorate_with_code, show_response, get_from_user, load_smart_df, ask_question | |
# from dotenv import load_dotenv | |
# from langchain_groq.chat_models import ChatGroq | |
# load_dotenv("Groq.txt") | |
# Groq_Token = os.environ["GROQ_API_KEY"] | |
# models = {"llama3":"llama3-70b-8192","mixtral": "mixtral-8x7b-32768", "llama2": "llama2-70b-4096", "gemma": "gemma-7b-it"} | |
# self_path = os.path.dirname(os.path.abspath(__file__)) | |
# # Using HTML and CSS to center the title | |
# st.write( | |
# """ | |
# <style> | |
# .title { | |
# text-align: center; | |
# color: #17becf; | |
# } | |
# """, | |
# unsafe_allow_html=True, | |
# ) | |
# # Displaying the centered title | |
# st.markdown("<h2 class='title'>VayuBuddy</h2>", unsafe_allow_html=True) | |
# st.markdown("<div style='text-align:center; padding: 20px;'>VayuBuddy makes pollution monitoring easier by bridging the gap between users and datasets.<br>No coding required—just meaningful insights at your fingertips!</div>", unsafe_allow_html=True) | |
# # Center-aligned instruction text with bold formatting | |
# st.markdown("<div style='text-align:center;'>Choose a query from <b>Select a prompt</b> or type a query in the <b>chat box</b>, select a <b>LLM</b> (Large Language Model), and press enter to generate a response.</div>", unsafe_allow_html=True) | |
# # os.environ["PANDASAI_API_KEY"] = "$2a$10$gbmqKotzJOnqa7iYOun8eO50TxMD/6Zw1pLI2JEoqncwsNx4XeBS2" | |
# # with open(join(self_path, "context1.txt")) as f: | |
# # context = f.read().strip() | |
# # agent = load_agent(join(self_path, "app_trial_1.csv"), context) | |
# # df = preprocess_and_load_df(join(self_path, "Data.csv")) | |
# # inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2" | |
# # inference_server = "https://api-inference.huggingface.co/models/codellama/CodeLlama-13b-hf" | |
# # inference_server = "https://api-inference.huggingface.co/models/pandasai/bamboo-llm" | |
# model_name = st.sidebar.selectbox("Select LLM:", ["llama3","mixtral", "gemma"]) | |
# questions = ('Custom Prompt', | |
# 'Plot the monthly average PM2.5 for the year 2023.', | |
# 'Which month in which year has the highest average PM2.5 overall?', | |
# 'Which month in which year has the highest PM2.5 overall?', | |
# 'Which month has the highest average PM2.5 in 2023 for Mumbai?', | |
# 'Plot and compare monthly timeseries of pollution for Mumbai and Bengaluru.', | |
# 'Plot the yearly average PM2.5.', | |
# 'Plot the monthly average PM2.5 of Delhi, Mumbai and Bengaluru for the year 2022.', | |
# 'Which month has the highest pollution?', | |
# 'Which city has the highest PM2.5 level in July 2022?', | |
# 'Plot and compare monthly timeseries of PM2.5 for Mumbai and Bengaluru.', | |
# 'Plot and compare the monthly average PM2.5 of Delhi, Mumbai and Bengaluru for the year 2022.', | |
# 'Plot the monthly average PM2.5.', | |
# 'Plot the monthly average PM10 for the year 2023.', | |
# 'Which (month, year) has the highest PM2.5?', | |
# 'Plot the monthly average PM2.5 of Delhi for the year 2022.', | |
# 'Plot the monthly average PM2.5 of Bengaluru for the year 2022.', | |
# 'Plot the monthly average PM2.5 of Mumbai for the year 2022.', | |
# 'Which state has the highest average PM2.5?', | |
# 'Plot monthly PM2.5 in Gujarat for 2023.', | |
# 'What is the name of the month with the highest average PM2.5 overall?') | |
# waiting_lines = ("Thinking...", "Just a moment...", "Let me think...", "Working on it...", "Processing...", "Hold on...", "One moment...", "On it...") | |
# # agent = load_agent(df, context="", inference_server=inference_server, name=model_name) | |
# # Initialize chat history | |
# if "responses" not in st.session_state: | |
# st.session_state.responses = [] | |
# # Display chat responses from history on app rerun | |
# for response in st.session_state.responses: | |
# if not response["no_response"]: | |
# show_response(st, response) | |
# show = True | |
# if prompt := st.sidebar.selectbox("Select a Prompt:", questions): | |
# # add a note "select custom prompt to ask your own question" | |
# st.sidebar.info("Select 'Custom Prompt' to ask your own question.") | |
# if prompt == 'Custom Prompt': | |
# show = False | |
# # React to user input | |
# prompt = st.chat_input("Ask me anything about air quality!", key=10) | |
# if prompt : show = True | |
# if show : | |
# # Add user input to chat history | |
# response = get_from_user(prompt) | |
# response["no_response"] = False | |
# st.session_state.responses.append(response) | |
# # Display user input | |
# show_response(st, response) | |
# no_response = False | |
# # select random waiting line | |
# with st.spinner(random.choice(waiting_lines)): | |
# ran = False | |
# for i in range(1): | |
# print(f"Attempt {i+1}") | |
# llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0) | |
# df_check = pd.read_csv("Data.csv") | |
# df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"]) | |
# df_check = df_check.head(5) | |
# new_line = "\n" | |
# parameters = {"font.size": 12} | |
# template = f"""```python | |
# import pandas as pd | |
# import matplotlib.pyplot as plt | |
# # plt.rcParams.update({parameters}) | |
# df = pd.read_csv("Data.csv") | |
# df["Timestamp"] = pd.to_datetime(df["Timestamp"]) | |
# import geopandas as gpd | |
# india = gpd.read_file("https://gist.githubusercontent.com/jbrobst/56c13bbbf9d97d187fea01ca62ea5112/raw/e388c4cae20aa53cb5090210a42ebb9b765c0a36/india_states.geojson") | |
# india.loc[india['ST_NM'].isin(['Ladakh', 'Jammu & Kashmir']), 'ST_NM'] = 'Jammu and Kashmir' | |
# # df.dtypes | |
# {new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))} | |
# # {prompt.strip()} | |
# # <your code here> | |
# ``` | |
# """ | |
# query = f"""I have a pandas dataframe data of PM2.5 and PM10. | |
# * The columns are 'Timestamp', 'station', 'PM2.5', 'PM10', 'address', 'city', 'latitude', 'longitude',and 'state'. | |
# * Frequency of data is daily. | |
# * `pollution` generally means `PM2.5`. | |
# * You already have df, so don't read the csv file | |
# * Don't print anything, but save result in a variable `answer` and make it global. | |
# * Unless explicitly mentioned, don't consider the result as a plot. | |
# * PM2.5 guidelines: India: 60, WHO: 15. | |
# * PM10 guidelines: India: 100, WHO: 50. | |
# * If result is a plot, show the India and WHO guidelines in the plot. | |
# * If result is a plot make it in tight layout, save it and save path in `answer`. Example: `answer='plot.png'` | |
# * If result is a plot, rotate x-axis tick labels by 45 degrees, | |
# * If result is not a plot, save it as a string in `answer`. Example: `answer='The city is Mumbai'` | |
# * I have a geopandas.geodataframe india containining the coordinates required to plot Indian Map with states. | |
# * If the query asks you to plot on India Map, use that geodataframe to plot and then add more points as per the requirements using the similar code as follows : v = ax.scatter(df['longitude'], df['latitude']). If the colorbar is required, use the following code : plt.colorbar(v) | |
# * If the query asks you to plot on India Map plot the India Map in Beige color | |
# * Whenever you do any sort of aggregation, report the corresponding standard deviation, standard error and the number of data points for that aggregation. | |
# * Whenever you're reporting a floating point number, round it to 2 decimal places. | |
# * Always report the unit of the data. Example: `The average PM2.5 is 45.67 µg/m³` | |
# Complete the following code. | |
# {template} | |
# """ | |
# answer = None | |
# code = None | |
# try: | |
# answer = llm.invoke(query) | |
# code = f""" | |
# {template.split("```python")[1].split("```")[0]} | |
# {answer.content.split("```python")[1].split("```")[0]} | |
# """ | |
# # update variable `answer` when code is executed | |
# exec(code) | |
# ran = True | |
# no_response = False | |
# except Exception as e: | |
# no_response = True | |
# exception = e | |
# if code is not None: | |
# answer = f"!!!Faced an error while working on your query. Please try again!!!" | |
# if type(answer) != str: | |
# answer = f"!!!Faced an error while working on your query. Please try again!!!" | |
# response = {"role": "assistant", "content": answer, "gen_code": code, "ex_code": code, "last_prompt": prompt, "no_response": no_response} | |
# # Get response from agent | |
# # response = ask_question(model_name=model_name, question=prompt) | |
# # response = ask_agent(agent, prompt) | |
# if ran: | |
# break | |
# # Display agent response | |
# if code is not None: | |
# # Add agent response to chat history | |
# print("Adding response") | |
# st.session_state.responses.append(response) | |
# show_response(st, response) | |
# if no_response: | |
# print("No response") | |
# st.error(f"Failed to generate right output due to the following error:\n\n{exception}") | |
# prompt = 'Custom Prompt' | |
####################################################Added User Feedback################################################### | |
import streamlit as st | |
import os | |
import pandas as pd | |
import random | |
from os.path import join | |
from src import preprocess_and_load_df, load_agent, ask_agent, decorate_with_code, show_response, get_from_user, load_smart_df, ask_question | |
from dotenv import load_dotenv | |
from langchain_groq.chat_models import ChatGroq | |
from datasets import Dataset, load_dataset, concatenate_datasets | |
import streamlit as st | |
from streamlit_feedback import streamlit_feedback | |
import uuid | |
from huggingface_hub import login, HfFolder | |
import os | |
# Set the token | |
token = os.getenv("HF_TOKEN") # Replace "YOUR_AUTHENTICATION_TOKEN" with your actual token | |
# Login using the token | |
login(token=token) | |
model_name = st.sidebar.selectbox("Select LLM:", ["llama3","mixtral", "gemma"]) | |
contact_details = """ | |
**Feel free to reach out to us:** | |
- [Nipun Batra](mailto:[email protected]) | |
- [Zeel B Patel](mailto:[email protected]) | |
- [Yash J Bachwana](mailto:[email protected]) | |
""" | |
for _ in range(12): | |
st.sidebar.markdown(" ") | |
# Display contact details with message | |
st.sidebar.markdown("<hr>", unsafe_allow_html=True) | |
st.sidebar.markdown(contact_details, unsafe_allow_html=True) | |
# Function to push feedback data to Hugging Face Hub dataset | |
def push_to_dataset(feedback, comments,output,code,error): | |
# Load existing dataset or create a new one if it doesn't exist | |
try: | |
ds = load_dataset("YashB1/Feedbacks_eoc", split="evaluation") | |
except FileNotFoundError: | |
# If dataset doesn't exist, create a new one | |
ds = Dataset.from_dict({"feedback": [], "comments": [], "error": [], "output": [], "code": []}) | |
# Add new feedback to the dataset | |
new_data = {"feedback": [feedback], "comments": [comments], "error": [error], "output": [output], "code": [code]} # Convert feedback and comments to lists | |
new_data = Dataset.from_dict(new_data) | |
ds = concatenate_datasets([ds, new_data]) | |
# Push the updated dataset to Hugging Face Hub | |
ds.push_to_hub("YashB1/Feedbacks_eoc", split="evaluation") | |
load_dotenv("Groq.txt") | |
Groq_Token = os.environ["GROQ_API_KEY"] | |
models = {"llama3":"llama3-70b-8192","mixtral": "mixtral-8x7b-32768", "llama2": "llama2-70b-4096", "gemma": "gemma-7b-it"} | |
self_path = os.path.dirname(os.path.abspath(__file__)) | |
# Using HTML and CSS to center the title | |
st.write( | |
""" | |
<style> | |
.title { | |
text-align: center; | |
color: #17becf; | |
} | |
""", | |
unsafe_allow_html=True, | |
) | |
# Displaying the centered title | |
st.markdown("<h2 class='title'>VayuBuddy</h2>", unsafe_allow_html=True) | |
st.markdown("<div style='text-align:center; padding: 20px;'>VayuBuddy makes pollution monitoring easier by bridging the gap between users and datasets.<br>No coding required—just meaningful insights at your fingertips!</div>", unsafe_allow_html=True) | |
# Center-aligned instruction text with bold formatting | |
st.markdown("<div style='text-align:center;'>Choose a query from <b>Select a prompt</b> or type a query in the <b>chat box</b>, select a <b>LLM</b> (Large Language Model), and press enter to generate a response.</div>", unsafe_allow_html=True) | |
# os.environ["PANDASAI_API_KEY"] = "$2a$10$gbmqKotzJOnqa7iYOun8eO50TxMD/6Zw1pLI2JEoqncwsNx4XeBS2" | |
# with open(join(self_path, "context1.txt")) as f: | |
# context = f.read().strip() | |
# agent = load_agent(join(self_path, "app_trial_1.csv"), context) | |
# df = preprocess_and_load_df(join(self_path, "Data.csv")) | |
# inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2" | |
# inference_server = "https://api-inference.huggingface.co/models/codellama/CodeLlama-13b-hf" | |
# inference_server = "https://api-inference.huggingface.co/models/pandasai/bamboo-llm" | |
# model_name = st.sidebar.selectbox("Select LLM:", ["llama3","mixtral", "gemma"]) | |
if 'question_state' not in st.session_state: | |
st.session_state.question_state = False | |
if 'fbk' not in st.session_state: | |
st.session_state.fbk = str(uuid.uuid4()) | |
if 'feedback' not in st.session_state: | |
st.session_state.feedback = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [] | |
def display_answer(): | |
for entry in st.session_state.chat_history: | |
with st.chat_message("human"): | |
st.write(entry["question"]) | |
# st.write(entry["answer"]) | |
# print(entry["answer"]) | |
show_response(st, entry["answer"]) | |
def fbcb(response): | |
"""Update the history with feedback. | |
The question and answer are already saved in history. | |
Now we will add the feedback in that history entry. | |
""" | |
display_answer() # display hist | |
# Create a new feedback by changing the key of feedback component. | |
st.session_state.fbk = str(uuid.uuid4()) | |
question = st.chat_input(placeholder="Ask your question here .... !!!!") | |
if question: | |
# We need this because of feedback. That question above | |
# is a stopper. If user hits the feedback button, streamlit | |
# reruns the code from top and we cannot enter back because | |
# of that chat_input. | |
st.session_state.prompt = question | |
st.session_state.question_state = True | |
# We are now free because st.session_state.question_state is True. | |
# But there are consequences. We will have to handle | |
# the double runs of create_answer() and display_answer() | |
# just to get the user feedback. | |
if st.session_state.question_state: | |
waiting_lines = ("Thinking...", "Just a moment...", "Let me think...", "Working on it...", "Processing...", "Hold on...", "One moment...", "On it...") | |
with st.spinner(random.choice(waiting_lines)): | |
ran = False | |
for i in range(5): | |
print(f"Attempt {i+1}") | |
llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0) | |
df_check = pd.read_csv("Data.csv") | |
df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"]) | |
df_check = df_check.head(5) | |
new_line = "\n" | |
parameters = {"font.size": 12} | |
# If the query asks you to make a gif/animation, don't use savefig to save it. Instead use ani.save(answer, writer='pillow'). | |
# If the query asks you to make a gif/animation, don't use colormaps . | |
template = f"""```python | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
# plt.rcParams.update({parameters}) | |
df = pd.read_csv("Data.csv") | |
df["Timestamp"] = pd.to_datetime(df["Timestamp"]) | |
import geopandas as gpd | |
file_path = "india_states.geojson" | |
india = gpd.read_file("https://gist.githubusercontent.com/jbrobst/56c13bbbf9d97d187fea01ca62ea5112/raw/e388c4cae20aa53cb5090210a42ebb9b765c0a36/india_states.geojson") | |
india.loc[india['ST_NM'].isin(['Ladakh', 'Jammu & Kashmir']), 'ST_NM'] = 'Jammu and Kashmir' | |
# df.dtypes | |
{new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))} | |
# {st.session_state.prompt.strip()} | |
# <your code here> | |
``` | |
""" | |
query = f"""I have a pandas dataframe data of PM2.5 and PM10. | |
* The columns are 'Timestamp', 'station', 'PM2.5', 'PM10', 'address', 'city', 'latitude', 'longitude',and 'state'. | |
* Frequency of data is daily. | |
* `pollution` generally means `PM2.5`. | |
* You already have df, so don't read the csv file | |
* Don't print anything, but save result in a variable `answer` and make it global. | |
* Unless explicitly mentioned, don't consider the result as a plot. | |
* PM2.5 guidelines: India: 60, WHO: 15. | |
* PM10 guidelines: India: 100, WHO: 50. | |
* If query asks to plot calendarmap, use library calmap. | |
* If result is a plot, show the India and WHO guidelines in the plot. | |
* If result is a plot make it in tight layout, save it and save path in `answer`. Example: `answer='plot.png'` | |
* If result is a plot, rotate x-axis tick labels by 45 degrees, | |
* If result is not a plot, save it as a string in `answer`. Example: `answer='The city is Mumbai'` | |
* I have a geopandas.geodataframe india containining the coordinates required to plot Indian Map with states. | |
* If the query asks you to plot on India Map, use that geodataframe to plot and then add more points as per the requirements using the similar code as follows : v = ax.scatter(df['longitude'], df['latitude']). If the colorbar is required, use the following code : plt.colorbar(v) | |
* If the query asks you to plot on India Map plot the India Map in Beige color | |
* Whenever you do any sort of aggregation, report the corresponding standard deviation, standard error and the number of data points for that aggregation. | |
* Whenever you're reporting a floating point number, round it to 2 decimal places. | |
* Always report the unit of the data. Example: `The average PM2.5 is 45.67 µg/m³` | |
Complete the following code. | |
{template} | |
""" | |
answer = None | |
code = None | |
exception = None | |
try: | |
answer = llm.invoke(query) | |
code = f""" | |
{template.split("```python")[1].split("```")[0]} | |
{answer.content.split("```python")[1].split("```")[0]} | |
""" | |
# update variable `answer` when code is executed | |
exec(code) | |
ran = True | |
no_response = False | |
except Exception as e: | |
no_response = True | |
exception = e | |
if code is not None: | |
answer = f"!!!Faced an error while working on your query. Please try again!!!" | |
if type(answer) != str: | |
answer = f"!!!Faced an error while working on your query. Please try again!!!" | |
response = {"role": "assistant", "content": answer, "gen_code": code, "ex_code": code, "last_prompt": st.session_state.prompt, "no_response": no_response,"exception": exception} | |
# print(response) | |
if ran: | |
break | |
# Display agent response | |
if code is not None: | |
# Add agent response to chat history | |
if response['content'][-4:] == ".gif" : | |
# Provide a button to show the gif, we don't want it to run forever | |
st.image(response['content'], use_column_width=True) | |
response['content'] = "" | |
print("Adding response : ") | |
message_id = len(st.session_state.chat_history) | |
st.session_state.chat_history.append({ | |
"question": st.session_state.prompt, | |
"answer": response, | |
"message_id": message_id, | |
}) | |
display_answer() | |
if no_response: | |
print("No response") | |
st.error(f"Failed to generate right output due to the following error:\n\n{exception}") | |
# display_answer() | |
# Pressing a button in feedback reruns the code. | |
st.session_state.feedback = streamlit_feedback( | |
feedback_type="thumbs", | |
optional_text_label="[Optional]", | |
align="flex-start", | |
key=st.session_state.fbk, | |
on_submit=fbcb | |
) | |
print("FeedBack",st.session_state.feedback) | |
if st.session_state.feedback : | |
push_to_dataset(st.session_state.feedback['score'],st.session_state.feedback['text'],answer,code,exception) | |
st.success("Feedback submitted successfully!") | |