Surbhi commited on
Commit
cedd211
·
1 Parent(s): 1960a99

Feature extraction and model training

Browse files
app.py CHANGED
@@ -107,8 +107,8 @@ if task == "Classification":
107
 
108
  # Model Initialization
109
  model_mapping = {
110
- "KNN": KNeighborsClassifier() if task == "Classification" else KNeighborsRegressor(),
111
- "SVM": SVC() if task == "Classification" else SVR(),
112
  "Random Forest": RandomForestClassifier() if task == "Classification" else RandomForestRegressor(),
113
  "Decision Tree": DecisionTreeClassifier() if task == "Classification" else DecisionTreeRegressor(),
114
  "Perceptron": Perceptron() if task == "Classification" else Perceptron()
 
107
 
108
  # Model Initialization
109
  model_mapping = {
110
+ "KNN": KNeighborsClassifier(n_neighbors=min(5, len(X_train))) if task == "Classification"
111
+ else KNeighborsRegressor(n_neighbors=min(5, len(X_train))), "SVM": SVC() if task == "Classification" else SVR(),
112
  "Random Forest": RandomForestClassifier() if task == "Classification" else RandomForestRegressor(),
113
  "Decision Tree": DecisionTreeClassifier() if task == "Classification" else DecisionTreeRegressor(),
114
  "Perceptron": Perceptron() if task == "Classification" else Perceptron()
datasets/churn_prediction.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ customer_tenure,monthly_charge,total_spend,churned
2
+ 31,66,8543,1
3
+ 48,76,9166,0
4
+ 81,55,4124,0
5
+ 36,49,444,1
6
+ 82,47,9990,0
7
+ 74,64,1717,1
8
+ 42,69,2432,1
9
+ 59,26,8834,1
10
+ 63,2,4214,0
11
+ 25,61,2510,1
12
+ 40,20,8301,1
13
+ 95,44,5788,0
14
+ 25,91,737,1
15
+ 73,21,2805,1
16
+ 13,55,5670,0
17
+ 90,30,6692,0
18
+ 20,12,4803,0
19
+ 43,98,4204,0
20
+ 4,96,3253,0
21
+ 73,73,6308,1
22
+ 23,39,5140,1
23
+ 99,42,8295,1
24
+ 28,27,9663,0
25
+ 63,3,9400,0
26
+ 93,20,2487,0
27
+ 35,97,1742,0
28
+ 27,47,4095,1
29
+ 11,90,7559,1
30
+ 53,82,7742,0
31
+ 68,9,2055,1
32
+ 72,95,4012,0
33
+ 36,56,3655,1
34
+ 35,97,9454,1
35
+ 54,42,6104,0
36
+ 71,16,8797,0
37
+ 92,39,7838,0
38
+ 52,15,7802,1
39
+ 77,28,2284,1
40
+ 32,74,9616,0
41
+ 26,8,9490,0
42
+ 76,8,8992,0
43
+ 48,74,4841,1
44
+ 85,5,998,0
45
+ 80,35,5080,1
46
+ 81,67,458,0
47
+ 5,15,6874,0
48
+ 47,53,7267,0
49
+ 39,83,4498,0
50
+ 15,62,7376,1
51
+ 41,87,9288,1
52
+ 25,9,7225,1
53
+ 68,1,1740,0
54
+ 67,25,2131,1
55
+ 71,78,5898,1
56
+ 19,48,7290,1
57
+ 68,55,3248,0
58
+ 28,81,1428,1
59
+ 67,6,3532,1
60
+ 10,69,5673,0
61
+ 60,41,7098,1
62
+ 72,57,9842,1
63
+ 60,50,3420,0
64
+ 80,90,9649,0
65
+ 98,49,3604,1
66
+ 90,78,1488,1
67
+ 66,81,7740,1
68
+ 53,1,3777,1
69
+ 53,52,3272,0
70
+ 77,27,6384,1
71
+ 28,72,7780,1
72
+ 19,5,7273,0
73
+ 49,46,8496,0
74
+ 9,28,218,0
75
+ 32,32,3718,1
76
+ 37,36,6195,0
77
+ 83,26,9569,0
78
+ 97,15,5142,1
79
+ 8,72,1396,1
80
+ 53,40,7841,1
81
+ 78,61,9672,0
82
+ 82,53,4726,1
83
+ 46,28,516,0
84
+ 74,40,4775,0
85
+ 7,51,9708,1
86
+ 26,99,9038,0
87
+ 12,87,645,0
88
+ 92,11,9808,1
89
+ 55,17,6166,1
90
+ 58,48,7866,1
91
+ 92,80,6125,0
92
+ 89,85,5132,0
93
+ 72,85,5300,1
94
+ 66,27,9291,0
95
+ 4,34,7599,1
96
+ 15,33,6090,1
97
+ 31,83,5393,0
98
+ 23,94,6995,1
99
+ 84,92,1717,0
100
+ 4,38,2849,1
101
+ 27,9,8338,0
datasets/customer_segmentation.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ age,income,spending_score,segment
2
+ 6,15,0.95,C
3
+ 33,28,0.62,B
4
+ 84,73,0.5,B
5
+ 74,77,0.62,C
6
+ 97,51,0.28,C
7
+ 8,97,0.99,C
8
+ 85,15,0.66,C
9
+ 25,59,0.12,B
10
+ 26,77,0.33,B
11
+ 60,94,0.14,C
12
+ 88,89,0.9,B
13
+ 35,53,0.8,C
14
+ 72,58,0.4,B
15
+ 25,35,0.13,C
16
+ 18,35,0.39,A
17
+ 72,35,0.47,C
18
+ 19,27,0.43,A
19
+ 47,99,0.79,B
20
+ 13,70,0.51,A
21
+ 28,55,0.95,A
22
+ 20,57,0.47,A
23
+ 57,40,0.45,B
24
+ 20,87,0.65,C
25
+ 80,6,0.53,C
26
+ 65,30,0.39,B
27
+ 30,13,0.94,C
28
+ 29,4,0.48,B
29
+ 17,1,0.29,B
30
+ 98,16,0.92,A
31
+ 19,38,0.41,B
32
+ 39,67,0.16,A
33
+ 92,87,0.89,C
34
+ 56,88,0.11,A
35
+ 70,6,0.86,C
36
+ 56,11,0.5,A
37
+ 97,36,0.27,A
38
+ 45,6,0.98,A
39
+ 90,96,0.53,A
40
+ 43,99,0.18,B
41
+ 9,52,0.14,A
42
+ 76,2,0.86,A
43
+ 45,98,0.84,B
44
+ 90,15,0.09,B
45
+ 15,17,0.06,C
46
+ 46,54,0.69,B
47
+ 9,63,0.69,A
48
+ 68,24,0.78,A
49
+ 83,2,0.94,B
50
+ 97,43,0.02,C
51
+ 5,91,0.22,B
52
+ 93,38,0.14,C
53
+ 30,8,0.13,B
54
+ 53,39,0.13,C
55
+ 60,30,0.44,C
56
+ 97,76,0.51,C
57
+ 33,91,0.69,A
58
+ 36,25,0.15,A
59
+ 54,10,0.84,C
60
+ 60,81,0.07,B
61
+ 40,12,0.78,A
62
+ 35,79,0.59,C
63
+ 22,46,0.54,C
64
+ 57,51,0.84,A
65
+ 4,54,0.81,B
66
+ 63,62,0.91,B
67
+ 84,41,0.13,B
68
+ 50,23,0.8,A
69
+ 6,86,0.19,A
70
+ 42,20,0.51,C
71
+ 70,96,0.18,B
72
+ 75,17,1.0,A
73
+ 27,81,0.61,B
74
+ 73,69,0.14,C
75
+ 29,55,0.01,B
76
+ 55,69,0.9,B
77
+ 35,68,0.28,C
78
+ 32,10,0.99,A
79
+ 38,17,0.05,B
80
+ 80,10,0.04,C
81
+ 55,72,0.64,B
82
+ 82,71,0.1,A
83
+ 29,20,0.76,B
84
+ 64,62,0.18,A
85
+ 35,11,0.82,C
86
+ 30,88,0.85,C
87
+ 51,94,0.1,C
88
+ 40,28,0.71,C
89
+ 50,4,0.53,C
90
+ 52,98,0.12,C
91
+ 70,41,0.93,B
92
+ 65,37,0.99,C
93
+ 49,67,0.92,C
94
+ 87,24,0.21,B
95
+ 47,53,0.16,B
96
+ 3,98,0.53,C
97
+ 42,29,0.04,C
98
+ 17,32,0.6,A
99
+ 70,32,0.46,B
100
+ 2,32,0.18,C
101
+ 68,22,0.5,A
datasets/disease_prediction.csv CHANGED
@@ -1,4 +1,101 @@
1
- fever,cough,fatigue,disease
2
- 98.6,0,0,"Healthy"
3
- 100.2,1,1,"Flu"
4
- 101.5,1,0,"COVID-19"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ age,gender,blood_pressure,cholesterol,diabetes,disease_present
2
+ 67,43,89,24,39,54
3
+ 41,41,31,76,94,82
4
+ 77,22,29,81,67,67
5
+ 58,2,24,31,92,99
6
+ 46,76,17,29,28,9
7
+ 84,10,98,65,26,82
8
+ 22,14,83,93,25,5
9
+ 84,41,35,92,75,37
10
+ 30,30,20,55,51,13
11
+ 33,56,94,3,50,37
12
+ 90,7,28,21,23,44
13
+ 54,58,25,77,47,21
14
+ 88,93,77,81,95,20
15
+ 16,97,9,85,40,89
16
+ 89,13,99,33,27,39
17
+ 32,95,53,50,68,95
18
+ 41,17,41,35,42,32
19
+ 31,85,35,18,23,77
20
+ 55,9,15,89,45,97
21
+ 15,13,80,76,21,50
22
+ 1,80,14,15,83,67
23
+ 32,32,65,67,60,74
24
+ 62,69,84,33,32,51
25
+ 26,10,96,47,23,70
26
+ 50,66,35,27,6,2
27
+ 52,59,76,56,59,67
28
+ 94,36,1,33,68,72
29
+ 41,89,48,26,45,34
30
+ 12,66,30,10,62,76
31
+ 17,73,9,33,46,72
32
+ 16,83,97,32,11,40
33
+ 86,81,31,50,34,98
34
+ 74,56,69,25,34,59
35
+ 25,94,61,80,12,99
36
+ 77,57,21,41,20,51
37
+ 55,48,86,3,46,66
38
+ 10,92,80,73,65,38
39
+ 48,68,28,14,56,44
40
+ 32,54,36,79,8,84
41
+ 34,6,82,4,6,92
42
+ 87,96,9,79,48,69
43
+ 44,26,54,41,18,84
44
+ 35,12,39,68,70,73
45
+ 77,75,64,2,93,45
46
+ 87,22,56,82,90,5
47
+ 36,89,73,63,37,62
48
+ 63,84,93,91,29,29
49
+ 35,14,90,16,49,68
50
+ 15,64,8,21,47,87
51
+ 51,11,87,84,76,88
52
+ 42,61,76,98,24,86
53
+ 67,51,26,20,35,95
54
+ 97,35,86,84,88,71
55
+ 16,53,79,8,2,41
56
+ 46,55,62,17,60,19
57
+ 64,17,67,97,86,53
58
+ 59,30,12,71,85,77
59
+ 83,33,36,63,85,87
60
+ 2,3,1,2,95,22
61
+ 29,84,97,69,52,50
62
+ 18,89,17,25,8,16
63
+ 81,10,57,17,62,91
64
+ 39,17,83,3,66,95
65
+ 74,27,34,12,85,78
66
+ 80,95,82,59,34,93
67
+ 80,15,4,72,1,80
68
+ 54,38,31,14,69,4
69
+ 30,78,57,69,55,40
70
+ 49,90,78,50,80,44
71
+ 83,30,88,68,31,64
72
+ 58,42,76,63,89,53
73
+ 99,79,50,74,29,16
74
+ 39,5,87,55,34,67
75
+ 17,44,67,14,43,86
76
+ 92,97,86,84,25,51
77
+ 26,54,43,72,45,99
78
+ 88,58,8,79,87,63
79
+ 27,96,83,64,30,74
80
+ 25,55,80,40,13,89
81
+ 19,42,99,4,33,41
82
+ 63,36,73,16,77,89
83
+ 57,1,36,7,43,35
84
+ 52,55,28,91,54,36
85
+ 78,56,28,84,8,94
86
+ 46,95,93,65,80,62
87
+ 88,89,88,19,44,36
88
+ 44,28,14,17,11,16
89
+ 25,9,32,72,6,5
90
+ 34,63,44,58,40,98
91
+ 13,20,47,7,56,47
92
+ 36,18,62,20,56,75
93
+ 70,38,54,41,47,33
94
+ 88,97,13,34,77,27
95
+ 27,81,45,89,74,90
96
+ 91,56,51,61,5,2
97
+ 1,14,95,46,70,70
98
+ 65,1,88,44,22,93
99
+ 47,81,91,37,67,76
100
+ 98,79,79,72,39,22
101
+ 21,37,40,74,3,14
datasets/energy_consumption.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ day,temperature,energy_usage
2
+ 2023-01-01,32,12
3
+ 2023-01-02,32,51
4
+ 2023-01-03,13,5
5
+ 2023-01-04,28,48
6
+ 2023-01-05,31,58
7
+ 2023-01-06,15,19
8
+ 2023-01-07,29,37
9
+ 2023-01-08,31,89
10
+ 2023-01-09,31,97
11
+ 2023-01-10,38,13
12
+ 2023-01-11,12,83
13
+ 2023-01-12,29,14
14
+ 2023-01-13,21,28
15
+ 2023-01-14,19,98
16
+ 2023-01-15,16,82
17
+ 2023-01-16,32,82
18
+ 2023-01-17,20,67
19
+ 2023-01-18,11,29
20
+ 2023-01-19,34,35
21
+ 2023-01-20,37,54
22
+ 2023-01-21,19,90
23
+ 2023-01-22,38,39
24
+ 2023-01-23,39,35
25
+ 2023-01-24,15,96
26
+ 2023-01-25,36,28
27
+ 2023-01-26,22,46
28
+ 2023-01-27,10,65
29
+ 2023-01-28,16,54
30
+ 2023-01-29,33,79
31
+ 2023-01-30,14,92
32
+ 2023-01-31,18,18
33
+ 2023-02-01,31,37
34
+ 2023-02-02,34,28
35
+ 2023-02-03,12,99
36
+ 2023-02-04,28,75
37
+ 2023-02-05,25,9
38
+ 2023-02-06,31,22
39
+ 2023-02-07,17,61
40
+ 2023-02-08,30,84
41
+ 2023-02-09,21,4
42
+ 2023-02-10,32,47
43
+ 2023-02-11,19,72
44
+ 2023-02-12,29,29
45
+ 2023-02-13,15,32
46
+ 2023-02-14,11,69
47
+ 2023-02-15,15,32
48
+ 2023-02-16,27,65
49
+ 2023-02-17,26,32
50
+ 2023-02-18,34,92
51
+ 2023-02-19,34,40
52
+ 2023-02-20,37,7
53
+ 2023-02-21,14,71
54
+ 2023-02-22,38,76
55
+ 2023-02-23,29,56
56
+ 2023-02-24,31,88
57
+ 2023-02-25,12,46
58
+ 2023-02-26,27,41
59
+ 2023-02-27,35,87
60
+ 2023-02-28,30,52
61
+ 2023-03-01,26,79
62
+ 2023-03-02,38,18
63
+ 2023-03-03,34,98
64
+ 2023-03-04,27,9
65
+ 2023-03-05,16,86
66
+ 2023-03-06,37,91
67
+ 2023-03-07,16,36
68
+ 2023-03-08,25,71
69
+ 2023-03-09,19,2
70
+ 2023-03-10,24,38
71
+ 2023-03-11,34,92
72
+ 2023-03-12,25,54
73
+ 2023-03-13,16,55
74
+ 2023-03-14,22,14
75
+ 2023-03-15,29,99
76
+ 2023-03-16,32,81
77
+ 2023-03-17,27,11
78
+ 2023-03-18,38,9
79
+ 2023-03-19,32,4
80
+ 2023-03-20,22,56
81
+ 2023-03-21,17,64
82
+ 2023-03-22,12,52
83
+ 2023-03-23,10,92
84
+ 2023-03-24,20,57
85
+ 2023-03-25,16,60
86
+ 2023-03-26,13,50
87
+ 2023-03-27,20,52
88
+ 2023-03-28,10,57
89
+ 2023-03-29,31,34
90
+ 2023-03-30,29,86
91
+ 2023-03-31,11,84
92
+ 2023-04-01,28,74
93
+ 2023-04-02,11,28
94
+ 2023-04-03,26,96
95
+ 2023-04-04,16,6
96
+ 2023-04-05,23,62
97
+ 2023-04-06,10,5
98
+ 2023-04-07,32,5
99
+ 2023-04-08,28,19
100
+ 2023-04-09,10,2
101
+ 2023-04-10,27,6
datasets/fraud_detection.csv CHANGED
@@ -1,6 +1,101 @@
1
  transaction_amount,transaction_type,location,is_fraud
2
- 500,Credit Card,New York,0
3
- 1200,Wire Transfer,California,1
4
- 250,Debit Card,Texas,0
5
- 800,Online Purchase,Florida,1
6
- 50,Cash Withdrawal,Illinois,0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  transaction_amount,transaction_type,location,is_fraud
2
+ 16997,2,78,0
3
+ 19012,78,57,1
4
+ 37626,52,10,0
5
+ 6024,69,12,1
6
+ 47053,57,34,1
7
+ 43553,45,53,1
8
+ 3698,35,2,0
9
+ 8688,64,90,0
10
+ 8106,3,57,1
11
+ 17648,67,98,1
12
+ 38924,46,64,0
13
+ 22040,65,45,0
14
+ 40066,37,86,1
15
+ 42182,93,27,1
16
+ 49799,5,72,0
17
+ 36544,97,51,1
18
+ 32751,14,8,1
19
+ 7557,27,94,1
20
+ 4457,54,19,0
21
+ 23375,41,36,1
22
+ 34604,51,36,0
23
+ 13148,12,3,0
24
+ 45750,7,4,0
25
+ 10915,91,94,0
26
+ 30628,23,21,1
27
+ 49010,46,69,0
28
+ 9569,55,84,0
29
+ 34112,22,78,0
30
+ 6394,46,58,0
31
+ 22728,37,42,0
32
+ 44249,40,65,0
33
+ 44649,26,55,0
34
+ 3098,98,38,1
35
+ 16829,32,20,0
36
+ 23141,89,71,1
37
+ 49381,49,57,0
38
+ 35360,59,86,0
39
+ 45588,48,14,0
40
+ 44522,57,41,0
41
+ 48049,15,83,1
42
+ 41510,64,30,0
43
+ 49404,77,7,0
44
+ 24068,92,90,1
45
+ 13638,36,29,0
46
+ 5480,59,25,0
47
+ 14837,65,20,0
48
+ 23788,67,95,0
49
+ 1944,33,16,0
50
+ 45422,98,11,0
51
+ 11585,9,57,1
52
+ 23818,80,49,1
53
+ 42007,74,3,0
54
+ 6656,94,70,0
55
+ 39209,80,89,0
56
+ 10359,71,6,0
57
+ 33204,32,26,1
58
+ 20925,6,51,0
59
+ 36158,4,74,0
60
+ 43425,14,13,1
61
+ 39288,76,66,1
62
+ 2853,70,11,1
63
+ 2721,16,8,1
64
+ 4881,23,6,1
65
+ 22338,55,56,1
66
+ 24490,68,20,1
67
+ 20326,37,57,1
68
+ 46456,41,92,1
69
+ 19842,14,1,1
70
+ 20497,63,41,1
71
+ 49460,68,54,0
72
+ 39733,22,57,0
73
+ 5963,6,42,0
74
+ 1772,52,50,1
75
+ 38486,43,6,0
76
+ 8663,99,16,1
77
+ 20734,79,69,1
78
+ 20042,78,81,0
79
+ 44278,41,49,1
80
+ 20948,88,14,0
81
+ 9735,4,32,0
82
+ 21639,11,12,0
83
+ 18204,22,86,0
84
+ 44464,22,38,0
85
+ 29152,40,67,1
86
+ 13734,84,8,1
87
+ 42060,92,64,0
88
+ 13277,23,46,0
89
+ 26418,42,96,0
90
+ 3842,83,35,0
91
+ 22784,73,98,1
92
+ 20137,75,19,0
93
+ 10770,5,69,0
94
+ 8504,12,48,0
95
+ 35847,38,9,0
96
+ 40147,30,81,1
97
+ 24453,79,35,1
98
+ 30441,7,89,0
99
+ 4423,97,85,1
100
+ 48640,76,49,1
101
+ 40585,49,49,0
datasets/handwritten_digit_recognition.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ pixel_1,pixel_2,pixel_3,digit_label
2
+ 58,47,62,C
3
+ 67,15,25,B
4
+ 43,21,17,C
5
+ 24,8,92,B
6
+ 81,13,73,A
7
+ 98,12,49,A
8
+ 36,7,53,C
9
+ 17,51,95,A
10
+ 77,46,3,A
11
+ 86,38,36,B
12
+ 66,69,28,B
13
+ 84,6,33,B
14
+ 34,53,21,A
15
+ 61,11,39,A
16
+ 25,64,59,C
17
+ 33,59,85,C
18
+ 34,38,99,B
19
+ 41,80,57,B
20
+ 33,13,52,C
21
+ 26,19,76,B
22
+ 86,88,7,B
23
+ 50,64,58,B
24
+ 18,8,45,B
25
+ 53,41,90,A
26
+ 8,57,9,A
27
+ 81,11,79,B
28
+ 6,91,24,B
29
+ 93,17,69,C
30
+ 69,81,75,C
31
+ 13,11,41,A
32
+ 14,91,18,C
33
+ 19,15,91,B
34
+ 43,76,93,A
35
+ 80,83,40,A
36
+ 61,78,56,C
37
+ 21,31,10,C
38
+ 72,27,56,B
39
+ 23,17,40,C
40
+ 86,66,71,A
41
+ 22,88,42,B
42
+ 32,99,40,C
43
+ 38,43,14,B
44
+ 2,5,14,B
45
+ 68,67,20,C
46
+ 53,46,28,A
47
+ 50,91,88,A
48
+ 72,19,48,C
49
+ 74,7,36,B
50
+ 15,65,62,B
51
+ 65,80,49,A
52
+ 20,33,14,B
53
+ 42,39,57,C
54
+ 53,28,85,C
55
+ 20,11,35,C
56
+ 26,12,24,A
57
+ 94,43,38,B
58
+ 57,55,1,B
59
+ 21,74,25,A
60
+ 75,66,52,C
61
+ 16,82,33,A
62
+ 56,63,53,A
63
+ 88,48,39,A
64
+ 51,25,27,B
65
+ 16,15,75,A
66
+ 21,67,64,B
67
+ 67,90,37,A
68
+ 42,38,80,B
69
+ 18,94,53,B
70
+ 3,69,33,B
71
+ 64,53,59,A
72
+ 82,63,96,C
73
+ 13,82,49,C
74
+ 54,12,18,A
75
+ 44,90,77,C
76
+ 24,78,25,A
77
+ 4,39,51,B
78
+ 45,52,49,C
79
+ 19,3,37,A
80
+ 73,40,13,C
81
+ 76,13,23,B
82
+ 59,76,95,B
83
+ 20,70,83,C
84
+ 81,3,75,B
85
+ 24,53,93,B
86
+ 24,21,86,B
87
+ 61,41,15,C
88
+ 23,20,36,A
89
+ 29,23,99,C
90
+ 83,41,20,B
91
+ 44,88,25,B
92
+ 8,44,44,C
93
+ 65,48,41,A
94
+ 19,48,68,C
95
+ 15,99,71,B
96
+ 49,68,30,C
97
+ 81,47,67,C
98
+ 15,16,28,C
99
+ 92,14,38,A
100
+ 14,3,97,A
101
+ 73,8,92,C
datasets/house_price.csv DELETED
@@ -1,6 +0,0 @@
1
- area_sqft,bedrooms,bathrooms,location,price
2
- 1200,3,2,New York,350000
3
- 1800,4,3,California,500000
4
- 950,2,1,Texas,200000
5
- 2200,5,4,Florida,600000
6
- 1100,3,2,Illinois,300000
 
 
 
 
 
 
 
datasets/house_price_estimation.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ location,size_sqft,num_rooms,estimated_price
2
+ 92,65,31,47641
3
+ 34,62,50,28549
4
+ 81,81,88,47807
5
+ 4,26,58,46296
6
+ 74,94,74,45945
7
+ 51,66,76,31045
8
+ 20,38,81,32158
9
+ 38,29,99,44492
10
+ 93,62,52,46809
11
+ 73,95,36,9222
12
+ 98,74,54,35851
13
+ 55,22,8,13993
14
+ 62,34,29,2459
15
+ 80,88,33,13973
16
+ 97,50,78,30143
17
+ 63,65,99,46334
18
+ 84,43,47,46757
19
+ 84,48,40,3991
20
+ 65,31,54,20894
21
+ 58,26,72,4161
22
+ 76,21,32,49527
23
+ 56,41,70,11872
24
+ 61,20,26,21454
25
+ 74,61,59,30150
26
+ 3,68,67,7558
27
+ 82,93,74,34814
28
+ 68,59,69,4431
29
+ 45,53,99,30768
30
+ 17,84,34,35346
31
+ 99,98,86,45954
32
+ 79,92,75,25793
33
+ 41,26,13,30202
34
+ 26,45,70,2716
35
+ 45,76,54,40771
36
+ 54,64,77,27607
37
+ 10,31,81,42325
38
+ 28,27,54,12988
39
+ 20,1,60,24315
40
+ 15,92,12,40041
41
+ 49,75,78,21548
42
+ 22,38,80,8793
43
+ 97,79,96,23292
44
+ 11,98,91,36200
45
+ 42,68,77,17962
46
+ 55,12,51,27820
47
+ 38,75,14,47956
48
+ 40,20,26,30049
49
+ 99,67,44,46360
50
+ 69,60,58,22009
51
+ 65,55,61,18875
52
+ 91,47,83,28971
53
+ 99,74,65,28990
54
+ 32,89,85,16953
55
+ 87,41,27,4929
56
+ 68,26,70,29825
57
+ 42,58,45,28767
58
+ 81,4,1,47012
59
+ 11,13,66,34498
60
+ 31,79,71,6651
61
+ 93,71,93,40528
62
+ 73,91,46,7981
63
+ 92,40,76,39139
64
+ 90,36,79,20963
65
+ 84,84,85,10145
66
+ 91,49,4,1995
67
+ 67,4,78,11920
68
+ 56,63,96,2173
69
+ 85,11,28,39933
70
+ 22,65,76,14693
71
+ 53,36,85,36183
72
+ 2,7,55,8070
73
+ 34,73,57,46430
74
+ 80,11,97,32042
75
+ 83,85,41,17664
76
+ 64,56,7,32629
77
+ 91,92,85,9767
78
+ 72,51,15,11626
79
+ 2,32,9,16460
80
+ 24,12,60,17465
81
+ 18,71,97,12599
82
+ 60,94,6,21352
83
+ 11,90,95,22177
84
+ 12,84,35,38345
85
+ 58,84,59,3894
86
+ 1,19,42,43140
87
+ 34,50,94,23314
88
+ 85,78,64,41227
89
+ 15,99,67,28567
90
+ 1,39,73,16491
91
+ 38,81,79,21261
92
+ 58,1,81,49444
93
+ 74,95,29,42891
94
+ 75,13,48,14912
95
+ 70,42,9,19832
96
+ 1,31,38,20434
97
+ 7,71,29,30109
98
+ 47,60,25,24435
99
+ 58,59,69,35756
100
+ 7,74,31,44413
101
+ 30,28,53,36027
datasets/house_price_prediction.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ square_feet,bedrooms,bathrooms,price
2
+ 11,49,24,24637
3
+ 60,31,34,46583
4
+ 37,43,46,9542
5
+ 82,2,87,19303
6
+ 72,96,61,5237
7
+ 31,3,81,28868
8
+ 89,13,84,42026
9
+ 43,5,56,5741
10
+ 14,99,38,5159
11
+ 15,7,63,6540
12
+ 39,61,74,39072
13
+ 46,21,90,20114
14
+ 55,36,78,37448
15
+ 91,20,99,10321
16
+ 16,44,64,9890
17
+ 1,90,38,34528
18
+ 30,88,15,28740
19
+ 79,40,91,23396
20
+ 60,95,27,22444
21
+ 80,92,49,47940
22
+ 43,22,87,16016
23
+ 48,92,79,33686
24
+ 86,18,45,49622
25
+ 97,34,16,42746
26
+ 51,31,67,39165
27
+ 82,61,48,7847
28
+ 44,41,33,36221
29
+ 30,12,45,12955
30
+ 70,55,73,40027
31
+ 52,79,55,19120
32
+ 52,68,5,31594
33
+ 17,30,96,45446
34
+ 46,51,41,22856
35
+ 2,48,65,35810
36
+ 4,96,95,40882
37
+ 36,48,11,45328
38
+ 53,76,64,46491
39
+ 52,96,25,19503
40
+ 3,85,83,21637
41
+ 52,84,57,49564
42
+ 70,28,60,34333
43
+ 17,33,17,38935
44
+ 94,4,20,22098
45
+ 67,75,5,33663
46
+ 66,62,27,22931
47
+ 75,37,31,38892
48
+ 71,57,99,41118
49
+ 35,98,80,23298
50
+ 14,41,2,27636
51
+ 10,18,80,11036
52
+ 43,24,72,19929
53
+ 80,26,96,10299
54
+ 61,60,87,37588
55
+ 27,14,67,29971
56
+ 99,67,66,36784
57
+ 18,67,82,47314
58
+ 66,76,32,17197
59
+ 66,7,11,40717
60
+ 88,76,83,8824
61
+ 35,32,47,4576
62
+ 24,72,5,19556
63
+ 64,20,40,33653
64
+ 12,76,78,44183
65
+ 37,38,26,29861
66
+ 96,41,63,17467
67
+ 30,29,50,32771
68
+ 75,85,33,38693
69
+ 87,2,23,44424
70
+ 35,63,21,12661
71
+ 95,2,55,21605
72
+ 27,71,84,29719
73
+ 23,72,30,42719
74
+ 14,17,30,24495
75
+ 69,70,70,2140
76
+ 44,34,7,23843
77
+ 74,37,35,24315
78
+ 28,23,82,17085
79
+ 12,27,46,1552
80
+ 8,62,24,47913
81
+ 38,99,93,36456
82
+ 61,91,19,45251
83
+ 83,38,6,43414
84
+ 46,57,99,14562
85
+ 73,69,81,30281
86
+ 24,86,2,5828
87
+ 87,62,43,11943
88
+ 40,48,58,15625
89
+ 38,6,81,5798
90
+ 30,92,40,5707
91
+ 10,93,98,42154
92
+ 36,82,87,8560
93
+ 26,72,9,43353
94
+ 78,63,9,44388
95
+ 3,44,54,32212
96
+ 56,78,94,10990
97
+ 17,25,21,24819
98
+ 88,87,21,43868
99
+ 17,7,47,34369
100
+ 56,8,67,4352
101
+ 74,13,25,12222
datasets/image_recognition.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ pixel_1,pixel_2,pixel_3,label
2
+ 98,13,63,C
3
+ 21,13,64,A
4
+ 17,57,17,A
5
+ 32,9,37,A
6
+ 23,23,48,C
7
+ 72,35,56,C
8
+ 45,6,93,C
9
+ 89,16,50,B
10
+ 59,57,54,C
11
+ 72,57,8,B
12
+ 13,65,38,A
13
+ 41,13,88,A
14
+ 11,84,32,A
15
+ 29,11,58,B
16
+ 27,80,28,C
17
+ 39,8,75,A
18
+ 57,99,62,B
19
+ 59,75,2,B
20
+ 10,41,74,B
21
+ 37,77,9,A
22
+ 93,70,92,B
23
+ 59,36,94,C
24
+ 24,13,58,C
25
+ 99,4,89,B
26
+ 35,89,82,C
27
+ 75,88,47,A
28
+ 82,19,65,A
29
+ 71,37,31,C
30
+ 36,70,94,C
31
+ 75,73,35,C
32
+ 7,3,14,C
33
+ 23,38,38,C
34
+ 54,87,33,C
35
+ 48,89,65,C
36
+ 85,2,75,A
37
+ 27,11,59,C
38
+ 67,53,93,C
39
+ 63,64,35,A
40
+ 18,63,68,C
41
+ 45,99,1,C
42
+ 36,3,76,B
43
+ 7,5,1,A
44
+ 81,74,18,C
45
+ 7,64,8,C
46
+ 5,87,98,A
47
+ 40,51,23,C
48
+ 84,77,30,C
49
+ 54,67,52,A
50
+ 28,90,18,B
51
+ 43,72,90,C
52
+ 20,46,86,B
53
+ 33,3,9,C
54
+ 77,85,3,C
55
+ 6,21,13,B
56
+ 35,20,32,B
57
+ 64,9,85,B
58
+ 20,30,91,C
59
+ 97,92,86,C
60
+ 50,63,18,C
61
+ 53,19,5,A
62
+ 18,59,1,A
63
+ 80,5,54,B
64
+ 16,26,1,B
65
+ 48,3,93,C
66
+ 40,54,92,B
67
+ 45,50,91,B
68
+ 83,26,40,C
69
+ 88,80,54,B
70
+ 66,70,93,B
71
+ 44,5,68,A
72
+ 32,11,41,B
73
+ 75,74,41,A
74
+ 26,54,24,A
75
+ 15,55,88,B
76
+ 33,52,69,C
77
+ 51,1,97,A
78
+ 20,28,98,A
79
+ 30,4,29,C
80
+ 90,8,63,B
81
+ 32,14,3,B
82
+ 38,47,30,B
83
+ 89,17,70,C
84
+ 59,90,9,A
85
+ 28,30,57,C
86
+ 81,56,53,A
87
+ 49,86,20,C
88
+ 84,26,64,C
89
+ 53,59,8,C
90
+ 45,51,78,B
91
+ 80,44,25,A
92
+ 21,75,71,A
93
+ 16,83,25,B
94
+ 28,30,54,C
95
+ 78,59,63,C
96
+ 89,42,89,B
97
+ 20,17,4,C
98
+ 22,74,29,B
99
+ 56,23,6,B
100
+ 86,22,52,A
101
+ 35,25,82,A
datasets/loan_approval.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ credit_score,income,loan_amount,loan_status
2
+ 0.1,65,44167,0
3
+ 0.72,8,30180,1
4
+ 0.84,43,40311,0
5
+ 0.02,90,6802,0
6
+ 0.94,87,44492,1
7
+ 0.77,84,48037,0
8
+ 0.92,74,22237,0
9
+ 0.03,51,8634,0
10
+ 0.53,95,6343,0
11
+ 0.02,70,45341,0
12
+ 0.03,35,12167,0
13
+ 0.58,21,39474,0
14
+ 0.31,40,49877,1
15
+ 0.48,54,29240,1
16
+ 0.9,86,29796,0
17
+ 0.1,56,13678,1
18
+ 0.67,42,33690,1
19
+ 0.4,58,3927,0
20
+ 0.71,92,41589,1
21
+ 0.04,19,18661,1
22
+ 0.82,82,42667,1
23
+ 0.37,11,30413,0
24
+ 0.27,75,16266,0
25
+ 0.98,76,34021,0
26
+ 0.28,57,4031,1
27
+ 0.39,57,22817,0
28
+ 0.84,59,5935,0
29
+ 0.06,29,27932,1
30
+ 0.38,93,5090,1
31
+ 0.56,97,40592,1
32
+ 0.45,48,49598,0
33
+ 0.83,28,6462,0
34
+ 0.88,3,36543,1
35
+ 0.66,74,36671,1
36
+ 0.8,97,26169,0
37
+ 0.97,7,24367,1
38
+ 0.36,63,39973,0
39
+ 0.08,38,3111,1
40
+ 0.81,1,5632,0
41
+ 0.67,90,2326,0
42
+ 0.1,92,17821,1
43
+ 0.59,74,33388,0
44
+ 0.76,45,14529,0
45
+ 0.22,21,7321,1
46
+ 0.21,89,44371,0
47
+ 0.22,26,38725,1
48
+ 0.16,18,43825,1
49
+ 0.78,7,11366,0
50
+ 0.24,33,19325,0
51
+ 0.96,42,39169,1
52
+ 0.89,2,34434,0
53
+ 0.96,99,49785,0
54
+ 0.12,60,7333,1
55
+ 0.92,53,6720,1
56
+ 0.18,69,33933,1
57
+ 0.73,45,19714,1
58
+ 0.76,57,46752,0
59
+ 0.36,21,3378,1
60
+ 0.51,29,36220,0
61
+ 0.87,71,7340,1
62
+ 0.98,25,15214,0
63
+ 0.17,65,5660,0
64
+ 0.6,7,16343,1
65
+ 0.77,78,9584,0
66
+ 0.47,55,22291,1
67
+ 0.46,29,37159,1
68
+ 0.74,20,14377,1
69
+ 0.84,11,1216,0
70
+ 0.31,72,3685,0
71
+ 0.4,51,31461,0
72
+ 0.56,69,17287,0
73
+ 0.06,87,24918,1
74
+ 0.22,64,2915,0
75
+ 0.74,6,14863,0
76
+ 0.07,7,29548,0
77
+ 0.82,11,16053,0
78
+ 0.75,38,39478,1
79
+ 0.48,46,44957,0
80
+ 0.94,80,2970,1
81
+ 0.64,32,1869,1
82
+ 0.82,68,26687,1
83
+ 0.69,29,37900,1
84
+ 0.61,23,36793,1
85
+ 0.78,2,26786,0
86
+ 0.66,69,41200,1
87
+ 0.85,19,26498,1
88
+ 0.95,25,48224,0
89
+ 0.07,60,25407,0
90
+ 0.91,90,41568,0
91
+ 0.91,21,14714,1
92
+ 0.41,23,34291,0
93
+ 0.8,58,33866,0
94
+ 0.67,32,10142,0
95
+ 0.86,73,36449,0
96
+ 0.7,3,37231,1
97
+ 0.74,19,7661,1
98
+ 0.12,24,23713,1
99
+ 0.81,67,13452,1
100
+ 0.43,25,1127,0
101
+ 0.05,37,26572,1
datasets/patient_survival_prediction.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ age,blood_pressure,heart_rate,survival_time
2
+ 16,46,0.13,86
3
+ 71,73,0.02,46
4
+ 28,63,0.16,95
5
+ 36,9,0.42,37
6
+ 21,13,0.35,52
7
+ 57,72,0.15,35
8
+ 94,16,0.98,30
9
+ 27,37,0.11,65
10
+ 97,90,0.28,89
11
+ 92,77,0.47,73
12
+ 94,95,0.35,25
13
+ 93,24,0.5,53
14
+ 93,53,0.84,18
15
+ 60,28,0.57,2
16
+ 70,85,0.37,39
17
+ 20,77,0.87,11
18
+ 15,95,0.34,40
19
+ 95,29,0.06,31
20
+ 76,81,0.31,33
21
+ 96,86,0.08,60
22
+ 75,29,0.0,76
23
+ 38,45,0.92,41
24
+ 68,73,0.18,49
25
+ 55,54,0.6,26
26
+ 59,87,0.06,5
27
+ 40,27,0.78,56
28
+ 61,25,0.72,91
29
+ 66,24,0.25,16
30
+ 75,67,0.11,40
31
+ 84,63,0.22,34
32
+ 15,48,0.5,74
33
+ 18,67,0.83,84
34
+ 35,87,0.24,58
35
+ 41,65,0.73,99
36
+ 13,40,0.03,17
37
+ 15,74,0.39,73
38
+ 35,82,0.26,44
39
+ 7,25,0.31,47
40
+ 67,4,0.56,68
41
+ 99,86,0.57,13
42
+ 81,42,0.8,55
43
+ 72,29,0.99,55
44
+ 39,72,0.49,38
45
+ 9,89,0.35,17
46
+ 58,43,0.47,89
47
+ 73,39,0.9,58
48
+ 86,87,0.68,92
49
+ 14,71,0.9,57
50
+ 16,12,0.06,11
51
+ 84,90,0.33,25
52
+ 99,10,0.94,29
53
+ 79,47,0.58,87
54
+ 56,25,0.71,11
55
+ 74,8,0.15,50
56
+ 98,41,0.72,87
57
+ 91,35,0.31,41
58
+ 8,78,0.72,54
59
+ 55,38,0.1,27
60
+ 33,63,0.61,52
61
+ 89,32,0.55,77
62
+ 65,38,0.11,97
63
+ 51,61,0.7,22
64
+ 30,58,0.61,4
65
+ 34,13,0.72,25
66
+ 10,65,0.62,52
67
+ 90,61,0.48,75
68
+ 96,19,0.94,52
69
+ 74,70,0.59,8
70
+ 74,77,0.61,97
71
+ 38,29,0.74,54
72
+ 2,26,0.22,75
73
+ 61,20,0.34,5
74
+ 89,17,0.46,56
75
+ 35,72,0.18,33
76
+ 33,22,0.04,87
77
+ 14,68,0.46,22
78
+ 94,91,0.27,90
79
+ 35,43,0.65,78
80
+ 85,26,0.6,16
81
+ 60,56,0.8,60
82
+ 35,26,0.49,39
83
+ 84,52,0.4,98
84
+ 32,24,0.72,12
85
+ 9,58,0.01,87
86
+ 62,7,0.91,54
87
+ 89,23,0.36,51
88
+ 15,56,0.97,23
89
+ 97,32,0.05,56
90
+ 3,48,1.0,97
91
+ 40,23,0.65,89
92
+ 14,40,0.96,87
93
+ 81,89,0.5,67
94
+ 37,2,0.15,47
95
+ 16,13,0.92,99
96
+ 85,10,0.84,89
97
+ 13,39,0.96,87
98
+ 3,91,0.17,31
99
+ 66,54,0.49,47
100
+ 42,48,0.0,95
101
+ 34,6,0.98,72
datasets/revenue_prediction.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ store_location,marketing_budget,previous_revenue,predicted_revenue
2
+ 96,21737,19200,44684
3
+ 78,42536,3377,35661
4
+ 38,5413,38450,1530
5
+ 84,41081,27379,49528
6
+ 51,19496,17352,24412
7
+ 9,8273,34165,29363
8
+ 6,25289,23761,27236
9
+ 18,26971,6018,48311
10
+ 1,26068,22007,15072
11
+ 38,29335,25178,6345
12
+ 88,4243,27447,39591
13
+ 7,2453,46210,26478
14
+ 68,28506,26662,33024
15
+ 57,27042,40343,15641
16
+ 53,11390,17064,21210
17
+ 33,13847,17137,24721
18
+ 92,40371,37940,47221
19
+ 97,19852,35977,22472
20
+ 4,26932,7774,41878
21
+ 2,35494,19864,12188
22
+ 22,44370,33507,16792
23
+ 30,30069,1345,46166
24
+ 13,39096,17393,17791
25
+ 28,32859,24819,30163
26
+ 15,43568,48364,14097
27
+ 3,24977,29804,5404
28
+ 94,19671,19195,22359
29
+ 75,10152,8531,26131
30
+ 47,6612,22890,38924
31
+ 78,31862,7641,10856
32
+ 14,35081,25433,15713
33
+ 84,23528,6560,35775
34
+ 32,42493,24622,47374
35
+ 55,31352,7850,31288
36
+ 50,26189,36037,10487
37
+ 4,18944,15111,43016
38
+ 51,29795,22560,27358
39
+ 26,6000,1931,24307
40
+ 65,48665,4612,14153
41
+ 21,11610,30866,27241
42
+ 84,8649,39124,40563
43
+ 47,33223,5017,13996
44
+ 58,30369,37468,30721
45
+ 60,11674,35414,11213
46
+ 96,24988,35194,23687
47
+ 91,35950,19214,39153
48
+ 11,32357,46899,37022
49
+ 93,30999,14000,39960
50
+ 14,14533,27117,4831
51
+ 79,14176,8250,44174
52
+ 74,40639,4396,1146
53
+ 26,13231,35334,19508
54
+ 5,10743,39277,9890
55
+ 46,38952,36805,30578
56
+ 60,46347,47087,3421
57
+ 64,36391,25657,3282
58
+ 97,34955,13658,48434
59
+ 67,42537,2226,36674
60
+ 1,27763,22029,34690
61
+ 8,30451,20230,45140
62
+ 98,18201,22023,37235
63
+ 61,13540,25137,49099
64
+ 59,18872,32791,4290
65
+ 16,12330,15299,43086
66
+ 91,17791,17549,49680
67
+ 81,42475,42059,39513
68
+ 81,19937,38724,38370
69
+ 54,31801,42949,22428
70
+ 87,42093,34034,31132
71
+ 27,3004,1007,6005
72
+ 95,10543,24394,14961
73
+ 54,15396,29450,19898
74
+ 42,17296,14931,44672
75
+ 36,21740,6250,26861
76
+ 22,21321,28185,1291
77
+ 29,19351,40001,18183
78
+ 87,28050,42275,49762
79
+ 41,18705,25893,25909
80
+ 78,42328,38077,21710
81
+ 56,39115,8135,25936
82
+ 74,14138,3937,49101
83
+ 3,2658,36004,20813
84
+ 35,29778,35012,27773
85
+ 52,18741,49599,39750
86
+ 61,26087,2336,49953
87
+ 51,23166,36715,20223
88
+ 78,2076,40517,14645
89
+ 79,12543,14550,23297
90
+ 50,45450,11504,34372
91
+ 81,24236,6017,35778
92
+ 69,8308,48904,17985
93
+ 21,8331,33597,10392
94
+ 42,20549,33786,40844
95
+ 65,7227,42223,20346
96
+ 41,12437,23646,44719
97
+ 27,19161,25739,39574
98
+ 47,15874,46688,11493
99
+ 6,21819,2188,9682
100
+ 55,15596,19975,33458
101
+ 89,15854,45976,31753
datasets/sales_forecasting.csv CHANGED
@@ -1,6 +1,101 @@
1
- month,product,units_sold,revenue
2
- January,Product A,150,4500
3
- February,Product A,200,6000
4
- March,Product B,180,5400
5
- April,Product C,250,7500
6
- May,Product B,220,6600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ month,advertising_budget,previous_sales,predicted_sales
2
+ 37,10343,70,70
3
+ 85,36592,34,52
4
+ 24,7554,62,14
5
+ 45,45374,98,2
6
+ 65,46366,23,93
7
+ 33,38456,49,78
8
+ 88,7245,69,1
9
+ 64,46254,83,39
10
+ 97,24948,19,40
11
+ 97,36125,40,87
12
+ 68,38570,29,27
13
+ 11,48020,78,32
14
+ 56,3884,39,6
15
+ 78,25152,47,32
16
+ 64,29707,62,42
17
+ 58,1176,57,47
18
+ 93,43194,67,51
19
+ 54,17634,73,62
20
+ 35,38525,56,34
21
+ 39,49812,59,48
22
+ 34,42810,21,31
23
+ 62,39142,9,5
24
+ 75,7113,37,99
25
+ 99,31683,81,47
26
+ 5,33054,8,61
27
+ 16,34601,61,58
28
+ 41,47138,86,14
29
+ 3,11910,74,70
30
+ 44,22367,86,91
31
+ 60,24249,61,85
32
+ 8,27092,40,12
33
+ 49,37741,91,23
34
+ 20,7037,88,26
35
+ 46,13960,59,18
36
+ 15,4263,97,87
37
+ 83,24095,52,6
38
+ 39,7779,52,20
39
+ 2,36053,68,20
40
+ 84,48616,17,50
41
+ 54,39595,24,8
42
+ 81,25143,53,88
43
+ 71,40104,94,63
44
+ 72,24204,8,33
45
+ 66,9619,92,64
46
+ 40,8446,94,13
47
+ 19,24093,8,74
48
+ 9,26933,34,57
49
+ 37,28457,28,67
50
+ 67,10309,81,44
51
+ 26,19780,36,12
52
+ 39,8858,27,71
53
+ 21,27132,1,28
54
+ 83,2151,71,82
55
+ 56,19477,99,91
56
+ 94,40310,4,23
57
+ 77,33123,46,82
58
+ 36,23775,25,45
59
+ 35,48346,57,89
60
+ 43,14634,56,93
61
+ 91,3134,86,69
62
+ 14,6788,77,8
63
+ 71,24996,93,81
64
+ 47,44077,35,43
65
+ 71,37569,87,84
66
+ 35,30369,59,22
67
+ 89,47464,50,37
68
+ 38,34307,23,73
69
+ 10,43003,93,55
70
+ 35,21693,66,34
71
+ 37,28388,48,88
72
+ 46,6463,47,84
73
+ 69,1726,31,36
74
+ 56,21220,5,74
75
+ 47,10137,1,82
76
+ 23,42501,78,54
77
+ 47,39434,96,10
78
+ 72,15945,92,11
79
+ 23,49629,9,49
80
+ 56,49418,43,4
81
+ 74,13257,80,38
82
+ 9,26321,14,88
83
+ 11,12735,54,73
84
+ 86,34115,99,4
85
+ 97,34148,25,13
86
+ 48,21939,32,72
87
+ 84,10109,95,5
88
+ 95,23581,51,10
89
+ 12,33685,48,75
90
+ 82,8633,30,73
91
+ 72,27209,82,10
92
+ 92,34594,92,93
93
+ 67,35010,88,58
94
+ 99,14780,28,83
95
+ 31,2004,35,79
96
+ 51,7032,82,6
97
+ 6,44292,74,63
98
+ 75,2125,46,26
99
+ 60,9142,17,50
100
+ 24,27513,54,94
101
+ 99,21189,15,13
datasets/sentiment_analysis.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ review_text,sentiment_score,sentiment_label
2
+ Neutral,0.46,0.92
3
+ Good,0.3,0.16
4
+ Good,0.49,0.2
5
+ Good,0.99,0.86
6
+ Neutral,1.0,0.07
7
+ Bad,0.7,0.18
8
+ Bad,0.14,0.84
9
+ Bad,0.55,0.1
10
+ Good,0.84,0.17
11
+ Good,0.43,0.05
12
+ Bad,0.48,0.1
13
+ Bad,0.57,0.27
14
+ Neutral,0.3,0.1
15
+ Bad,0.05,0.25
16
+ Neutral,0.8,0.27
17
+ Neutral,0.12,0.29
18
+ Neutral,0.18,0.74
19
+ Good,0.29,0.85
20
+ Neutral,0.95,0.0
21
+ Neutral,0.13,0.41
22
+ Good,0.08,0.04
23
+ Good,0.76,0.16
24
+ Good,0.26,0.59
25
+ Good,0.59,0.18
26
+ Neutral,0.03,0.55
27
+ Neutral,0.48,0.76
28
+ Neutral,0.85,0.41
29
+ Good,0.01,0.85
30
+ Neutral,0.38,0.97
31
+ Good,0.94,0.88
32
+ Bad,0.23,0.49
33
+ Neutral,0.73,0.09
34
+ Good,0.78,0.31
35
+ Good,0.86,0.83
36
+ Good,0.71,0.2
37
+ Bad,0.75,0.32
38
+ Good,0.21,0.79
39
+ Bad,0.65,0.39
40
+ Bad,0.14,0.71
41
+ Bad,0.81,0.31
42
+ Good,0.36,0.61
43
+ Bad,0.18,0.69
44
+ Bad,0.58,0.61
45
+ Neutral,0.91,0.15
46
+ Bad,0.21,0.99
47
+ Good,0.3,0.98
48
+ Neutral,0.81,0.87
49
+ Bad,0.79,0.69
50
+ Neutral,0.83,0.71
51
+ Bad,0.09,0.82
52
+ Good,0.87,0.91
53
+ Neutral,0.4,0.86
54
+ Good,0.82,0.43
55
+ Good,0.81,0.94
56
+ Bad,0.09,0.3
57
+ Neutral,0.43,0.16
58
+ Neutral,0.23,0.71
59
+ Neutral,0.87,0.45
60
+ Good,0.93,0.45
61
+ Bad,0.34,0.85
62
+ Good,0.9,0.11
63
+ Bad,0.21,0.77
64
+ Good,0.11,0.13
65
+ Bad,0.85,0.01
66
+ Neutral,0.78,0.43
67
+ Good,0.19,0.7
68
+ Neutral,0.03,0.17
69
+ Good,0.67,0.48
70
+ Bad,0.09,0.49
71
+ Good,0.93,0.48
72
+ Neutral,0.56,0.65
73
+ Good,0.26,0.35
74
+ Good,0.51,0.61
75
+ Neutral,0.05,0.36
76
+ Bad,0.14,0.25
77
+ Neutral,0.39,0.93
78
+ Neutral,0.44,0.24
79
+ Good,0.72,0.79
80
+ Bad,0.72,0.58
81
+ Good,0.33,0.87
82
+ Neutral,0.76,0.81
83
+ Good,0.83,0.13
84
+ Bad,0.38,0.01
85
+ Neutral,0.63,0.52
86
+ Good,0.6,0.83
87
+ Good,0.76,0.33
88
+ Neutral,0.49,0.29
89
+ Neutral,0.82,0.39
90
+ Bad,0.03,0.27
91
+ Bad,0.95,0.67
92
+ Good,0.43,0.41
93
+ Bad,0.91,0.13
94
+ Bad,0.58,0.34
95
+ Bad,0.21,0.7
96
+ Good,0.92,0.86
97
+ Good,0.28,0.99
98
+ Bad,0.16,0.39
99
+ Neutral,0.8,0.44
100
+ Neutral,0.63,0.67
101
+ Neutral,0.48,0.77
datasets/spam_detection.csv CHANGED
@@ -1,6 +1,101 @@
1
- email_text,is_spam
2
- "Congratulations! You won a lottery",1
3
- "Important update on your bank account",1
4
- "Meeting tomorrow at 10 AM",0
5
- "Get your free trial now!",1
6
- "Project submission deadline extended",0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ email_text,contains_link,word_count,is_spam
2
+ Good,31,4297,1
3
+ Good,28,5342,0
4
+ Bad,52,4636,1
5
+ Neutral,7,4398,1
6
+ Bad,8,2412,0
7
+ Neutral,50,5924,0
8
+ Bad,27,7028,1
9
+ Good,1,6569,0
10
+ Bad,94,2876,1
11
+ Bad,45,3607,1
12
+ Bad,82,8354,0
13
+ Good,64,693,0
14
+ Bad,76,5161,0
15
+ Neutral,26,9449,0
16
+ Neutral,39,6173,1
17
+ Good,42,2984,0
18
+ Bad,24,6016,1
19
+ Bad,23,6019,1
20
+ Bad,67,3203,1
21
+ Neutral,50,5356,0
22
+ Neutral,56,4165,0
23
+ Neutral,81,904,0
24
+ Neutral,38,7529,1
25
+ Good,62,6224,0
26
+ Good,47,7349,1
27
+ Neutral,75,4214,0
28
+ Good,35,807,1
29
+ Neutral,70,5813,1
30
+ Neutral,21,491,0
31
+ Bad,47,9031,0
32
+ Neutral,59,2913,0
33
+ Neutral,19,4268,1
34
+ Neutral,1,6095,0
35
+ Good,99,9329,1
36
+ Good,88,9357,1
37
+ Bad,51,130,1
38
+ Good,69,2193,1
39
+ Bad,12,892,1
40
+ Bad,36,4243,0
41
+ Bad,29,2678,0
42
+ Bad,71,9045,0
43
+ Neutral,74,1512,1
44
+ Bad,70,9878,0
45
+ Neutral,42,6557,0
46
+ Neutral,22,691,1
47
+ Bad,87,8155,1
48
+ Good,70,569,1
49
+ Bad,83,9994,1
50
+ Neutral,25,3967,0
51
+ Bad,9,7530,1
52
+ Good,97,6698,1
53
+ Bad,39,5251,0
54
+ Bad,27,5838,1
55
+ Neutral,1,8441,1
56
+ Neutral,71,5948,0
57
+ Neutral,56,9188,0
58
+ Neutral,93,2855,1
59
+ Good,27,1779,1
60
+ Good,50,9969,1
61
+ Neutral,93,8713,1
62
+ Neutral,89,9574,0
63
+ Bad,14,8636,1
64
+ Good,83,8972,1
65
+ Good,33,5670,0
66
+ Neutral,85,6497,1
67
+ Neutral,40,335,1
68
+ Bad,28,4703,0
69
+ Good,2,8502,0
70
+ Good,90,9440,0
71
+ Good,23,9778,0
72
+ Bad,81,7887,1
73
+ Good,81,419,0
74
+ Bad,36,9667,1
75
+ Neutral,73,3390,0
76
+ Bad,93,2481,1
77
+ Good,66,485,1
78
+ Neutral,13,1201,0
79
+ Neutral,91,1785,1
80
+ Good,24,2064,1
81
+ Bad,3,3612,0
82
+ Bad,76,4593,1
83
+ Good,80,6231,0
84
+ Neutral,69,2994,1
85
+ Neutral,34,8450,0
86
+ Good,31,4076,0
87
+ Neutral,73,634,0
88
+ Good,57,5419,0
89
+ Neutral,66,8962,0
90
+ Bad,20,4244,0
91
+ Bad,2,2062,1
92
+ Bad,74,6223,1
93
+ Neutral,60,2932,1
94
+ Bad,18,1582,1
95
+ Neutral,2,7616,1
96
+ Good,50,7632,1
97
+ Neutral,17,2158,1
98
+ Neutral,34,6692,1
99
+ Neutral,36,4933,1
100
+ Bad,96,2607,0
101
+ Good,68,1423,1
datasets/stock_market_trends.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ date,stock_index,market_sentiment,trend
2
+ 2023-01-01,73,0.07,11
3
+ 2023-01-02,3,0.13,80
4
+ 2023-01-03,49,0.71,99
5
+ 2023-01-04,16,0.12,46
6
+ 2023-01-05,53,0.56,90
7
+ 2023-01-06,6,0.83,58
8
+ 2023-01-07,43,0.75,53
9
+ 2023-01-08,74,0.04,85
10
+ 2023-01-09,5,0.55,96
11
+ 2023-01-10,58,0.62,93
12
+ 2023-01-11,58,0.12,80
13
+ 2023-01-12,17,0.8,10
14
+ 2023-01-13,72,0.4,40
15
+ 2023-01-14,71,0.03,88
16
+ 2023-01-15,9,0.9,24
17
+ 2023-01-16,16,0.81,45
18
+ 2023-01-17,97,0.77,60
19
+ 2023-01-18,79,0.42,63
20
+ 2023-01-19,65,0.87,76
21
+ 2023-01-20,26,0.54,42
22
+ 2023-01-21,73,0.17,42
23
+ 2023-01-22,82,0.27,94
24
+ 2023-01-23,15,0.24,21
25
+ 2023-01-24,33,0.31,34
26
+ 2023-01-25,9,0.14,51
27
+ 2023-01-26,40,0.03,24
28
+ 2023-01-27,55,0.45,90
29
+ 2023-01-28,93,0.89,32
30
+ 2023-01-29,2,0.61,80
31
+ 2023-01-30,36,0.1,69
32
+ 2023-01-31,98,0.85,21
33
+ 2023-02-01,82,0.48,94
34
+ 2023-02-02,83,0.64,14
35
+ 2023-02-03,19,0.98,5
36
+ 2023-02-04,53,0.26,2
37
+ 2023-02-05,3,0.93,64
38
+ 2023-02-06,10,0.11,93
39
+ 2023-02-07,84,0.56,45
40
+ 2023-02-08,21,0.13,12
41
+ 2023-02-09,69,0.77,76
42
+ 2023-02-10,50,0.12,14
43
+ 2023-02-11,50,0.06,45
44
+ 2023-02-12,31,0.19,56
45
+ 2023-02-13,14,0.62,16
46
+ 2023-02-14,65,0.08,30
47
+ 2023-02-15,38,0.5,25
48
+ 2023-02-16,66,0.59,43
49
+ 2023-02-17,13,0.51,8
50
+ 2023-02-18,68,0.82,96
51
+ 2023-02-19,21,0.54,3
52
+ 2023-02-20,18,0.62,31
53
+ 2023-02-21,5,0.86,43
54
+ 2023-02-22,9,0.49,27
55
+ 2023-02-23,56,0.27,75
56
+ 2023-02-24,91,0.81,90
57
+ 2023-02-25,10,0.19,10
58
+ 2023-02-26,80,0.23,99
59
+ 2023-02-27,10,0.79,38
60
+ 2023-02-28,9,0.95,21
61
+ 2023-03-01,74,0.6,93
62
+ 2023-03-02,53,0.01,35
63
+ 2023-03-03,13,0.04,93
64
+ 2023-03-04,74,0.66,42
65
+ 2023-03-05,89,0.95,43
66
+ 2023-03-06,98,0.65,86
67
+ 2023-03-07,2,0.22,80
68
+ 2023-03-08,13,0.63,53
69
+ 2023-03-09,35,0.31,33
70
+ 2023-03-10,62,0.15,63
71
+ 2023-03-11,1,0.43,70
72
+ 2023-03-12,40,0.96,11
73
+ 2023-03-13,5,0.94,87
74
+ 2023-03-14,62,0.37,76
75
+ 2023-03-15,7,0.29,82
76
+ 2023-03-16,97,0.99,66
77
+ 2023-03-17,99,0.6,88
78
+ 2023-03-18,15,0.25,86
79
+ 2023-03-19,12,0.76,53
80
+ 2023-03-20,23,0.84,49
81
+ 2023-03-21,28,0.21,76
82
+ 2023-03-22,97,0.28,57
83
+ 2023-03-23,81,0.76,10
84
+ 2023-03-24,84,0.53,17
85
+ 2023-03-25,33,0.85,9
86
+ 2023-03-26,60,0.94,68
87
+ 2023-03-27,14,0.46,16
88
+ 2023-03-28,60,0.98,71
89
+ 2023-03-29,17,0.41,41
90
+ 2023-03-30,31,0.04,51
91
+ 2023-03-31,82,0.06,36
92
+ 2023-04-01,7,0.26,48
93
+ 2023-04-02,69,0.97,83
94
+ 2023-04-03,9,0.83,68
95
+ 2023-04-04,6,0.84,68
96
+ 2023-04-05,85,0.16,72
97
+ 2023-04-06,80,0.83,21
98
+ 2023-04-07,22,0.57,76
99
+ 2023-04-08,74,0.44,72
100
+ 2023-04-09,52,0.57,90
101
+ 2023-04-10,6,0.39,98
datasets/stock_prediction.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ date,open_price,close_price,volume,predicted_price
2
+ 2023-01-01,3987,8007,6108,43393
3
+ 2023-01-02,8338,34651,6147,34916
4
+ 2023-01-03,47301,49591,4498,7533
5
+ 2023-01-04,44928,22942,2722,36374
6
+ 2023-01-05,27162,25520,5039,34970
7
+ 2023-01-06,30873,40508,5081,28507
8
+ 2023-01-07,13122,8002,6376,30545
9
+ 2023-01-08,10813,24465,109,12483
10
+ 2023-01-09,31021,18491,8917,43812
11
+ 2023-01-10,39974,33152,1126,27790
12
+ 2023-01-11,2797,2384,2565,40329
13
+ 2023-01-12,12980,35599,339,11832
14
+ 2023-01-13,14597,28254,7056,48523
15
+ 2023-01-14,17078,45875,8910,28192
16
+ 2023-01-15,15165,46595,8045,22229
17
+ 2023-01-16,9107,37484,1250,39573
18
+ 2023-01-17,33338,24930,7522,25311
19
+ 2023-01-18,27260,11541,9374,5609
20
+ 2023-01-19,9801,20335,5587,16634
21
+ 2023-01-20,28216,17036,5460,40261
22
+ 2023-01-21,30602,5002,7240,37525
23
+ 2023-01-22,49248,20954,4416,18867
24
+ 2023-01-23,43801,18589,3835,28164
25
+ 2023-01-24,5590,35728,3502,38205
26
+ 2023-01-25,23355,45132,1571,27935
27
+ 2023-01-26,40532,12794,4145,1810
28
+ 2023-01-27,35093,47029,2768,29670
29
+ 2023-01-28,10298,36037,2897,15298
30
+ 2023-01-29,18977,34341,1626,14205
31
+ 2023-01-30,21585,3628,4649,24944
32
+ 2023-01-31,19721,31866,1259,22685
33
+ 2023-02-01,33683,16906,2626,47059
34
+ 2023-02-02,44993,46280,2061,10540
35
+ 2023-02-03,26596,1927,8958,42202
36
+ 2023-02-04,6000,4310,1708,38757
37
+ 2023-02-05,42711,31551,6229,3414
38
+ 2023-02-06,47890,5272,9235,32171
39
+ 2023-02-07,6961,23929,4339,38695
40
+ 2023-02-08,46349,9783,7040,24846
41
+ 2023-02-09,28755,5730,7326,23485
42
+ 2023-02-10,17113,32438,2777,41028
43
+ 2023-02-11,45868,46855,8546,5737
44
+ 2023-02-12,3604,19690,4005,43690
45
+ 2023-02-13,6455,2016,7057,7406
46
+ 2023-02-14,20302,26026,7758,47234
47
+ 2023-02-15,5331,17612,3989,40101
48
+ 2023-02-16,21168,9961,7333,6379
49
+ 2023-02-17,45415,36510,5054,37565
50
+ 2023-02-18,14349,1517,7375,42181
51
+ 2023-02-19,1319,31018,4414,3213
52
+ 2023-02-20,37769,47346,2004,45658
53
+ 2023-02-21,43322,45224,4808,6749
54
+ 2023-02-22,12962,28851,1937,19178
55
+ 2023-02-23,13048,26969,3771,37274
56
+ 2023-02-24,9791,40786,5740,31066
57
+ 2023-02-25,22138,7958,9338,9700
58
+ 2023-02-26,2601,21771,507,15609
59
+ 2023-02-27,15904,36751,7493,46572
60
+ 2023-02-28,26014,14000,2982,21704
61
+ 2023-03-01,35331,30703,2197,33779
62
+ 2023-03-02,28723,9632,7483,41660
63
+ 2023-03-03,46878,30695,1772,2635
64
+ 2023-03-04,43381,15308,6816,18013
65
+ 2023-03-05,23497,36334,522,4904
66
+ 2023-03-06,48973,22045,5043,6917
67
+ 2023-03-07,33301,7241,6833,36477
68
+ 2023-03-08,10973,29320,9881,3524
69
+ 2023-03-09,1052,14385,3398,46201
70
+ 2023-03-10,47239,8493,1732,37567
71
+ 2023-03-11,12944,12399,5812,23203
72
+ 2023-03-12,27146,34708,2296,34747
73
+ 2023-03-13,46855,19086,9638,26148
74
+ 2023-03-14,40740,37240,5373,4769
75
+ 2023-03-15,12422,45070,1628,9090
76
+ 2023-03-16,24033,49420,5249,38279
77
+ 2023-03-17,20229,14239,9351,34612
78
+ 2023-03-18,27710,26236,2634,22410
79
+ 2023-03-19,32374,35322,9091,18178
80
+ 2023-03-20,44429,7073,8728,10003
81
+ 2023-03-21,10725,17319,8687,45128
82
+ 2023-03-22,24159,49469,2605,48605
83
+ 2023-03-23,5170,1861,1592,32284
84
+ 2023-03-24,28635,21312,1053,21633
85
+ 2023-03-25,30037,1482,6037,24069
86
+ 2023-03-26,10210,4491,4015,13653
87
+ 2023-03-27,34925,9075,6252,29006
88
+ 2023-03-28,11811,14290,6128,46224
89
+ 2023-03-29,23423,29020,7112,32476
90
+ 2023-03-30,28403,49877,7705,38642
91
+ 2023-03-31,41289,33622,9979,44594
92
+ 2023-04-01,40432,11546,6902,20132
93
+ 2023-04-02,3193,47016,3770,25156
94
+ 2023-04-03,1285,28941,1410,30875
95
+ 2023-04-04,39845,12321,7336,28343
96
+ 2023-04-05,13608,30054,6698,49177
97
+ 2023-04-06,20183,9560,1233,16416
98
+ 2023-04-07,31178,43893,5985,5134
99
+ 2023-04-08,3033,30991,2985,43215
100
+ 2023-04-09,5919,32419,1978,35945
101
+ 2023-04-10,32828,11171,6324,19171
datasets/text_classification.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ text_data,category
2
+ Good,B
3
+ Bad,C
4
+ Neutral,A
5
+ Neutral,A
6
+ Bad,A
7
+ Neutral,B
8
+ Neutral,C
9
+ Bad,C
10
+ Good,C
11
+ Neutral,C
12
+ Good,A
13
+ Neutral,C
14
+ Bad,A
15
+ Neutral,A
16
+ Neutral,A
17
+ Bad,A
18
+ Neutral,C
19
+ Good,A
20
+ Bad,B
21
+ Bad,B
22
+ Good,B
23
+ Neutral,B
24
+ Good,B
25
+ Bad,B
26
+ Good,A
27
+ Bad,C
28
+ Neutral,C
29
+ Good,C
30
+ Bad,C
31
+ Bad,A
32
+ Good,A
33
+ Neutral,A
34
+ Good,C
35
+ Neutral,A
36
+ Good,B
37
+ Bad,A
38
+ Neutral,A
39
+ Bad,C
40
+ Bad,B
41
+ Neutral,A
42
+ Bad,C
43
+ Neutral,B
44
+ Neutral,A
45
+ Good,A
46
+ Neutral,C
47
+ Good,A
48
+ Neutral,B
49
+ Neutral,B
50
+ Neutral,A
51
+ Good,B
52
+ Bad,A
53
+ Good,B
54
+ Bad,C
55
+ Good,A
56
+ Neutral,C
57
+ Bad,C
58
+ Bad,A
59
+ Bad,B
60
+ Bad,B
61
+ Good,B
62
+ Good,A
63
+ Good,B
64
+ Bad,C
65
+ Bad,C
66
+ Bad,B
67
+ Good,C
68
+ Bad,C
69
+ Bad,A
70
+ Good,A
71
+ Bad,A
72
+ Bad,C
73
+ Bad,B
74
+ Good,A
75
+ Neutral,B
76
+ Bad,B
77
+ Bad,C
78
+ Bad,A
79
+ Good,B
80
+ Neutral,C
81
+ Neutral,B
82
+ Good,C
83
+ Bad,C
84
+ Good,C
85
+ Good,A
86
+ Neutral,B
87
+ Good,C
88
+ Neutral,C
89
+ Good,B
90
+ Bad,A
91
+ Bad,C
92
+ Neutral,C
93
+ Good,B
94
+ Bad,A
95
+ Good,B
96
+ Bad,C
97
+ Neutral,B
98
+ Bad,C
99
+ Neutral,B
100
+ Good,A
101
+ Bad,C
datasets/traffic_flow_prediction.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hour,road_type,vehicle_count,predicted_traffic
2
+ 10,98,8096,83
3
+ 70,92,8041,32
4
+ 47,30,9556,46
5
+ 76,9,8276,16
6
+ 33,10,152,91
7
+ 85,81,2867,31
8
+ 11,89,8739,74
9
+ 56,68,4009,60
10
+ 41,28,5990,25
11
+ 14,55,1474,1
12
+ 49,90,7093,68
13
+ 70,68,1459,55
14
+ 89,52,5793,33
15
+ 13,2,5007,56
16
+ 11,49,6141,58
17
+ 39,15,8412,90
18
+ 82,68,408,66
19
+ 29,18,4409,47
20
+ 18,95,8047,56
21
+ 49,34,3475,91
22
+ 88,3,2437,40
23
+ 5,32,550,77
24
+ 74,20,9491,53
25
+ 91,57,5825,27
26
+ 2,2,1166,32
27
+ 51,60,2189,80
28
+ 38,55,1805,40
29
+ 29,41,1273,66
30
+ 77,40,2853,39
31
+ 76,30,6629,73
32
+ 30,23,7933,73
33
+ 60,42,9705,3
34
+ 40,43,3303,75
35
+ 54,7,3790,81
36
+ 62,15,3608,33
37
+ 83,85,3653,37
38
+ 97,32,3653,48
39
+ 90,39,5925,42
40
+ 65,73,7474,55
41
+ 19,94,8245,81
42
+ 86,97,2983,72
43
+ 14,92,9678,21
44
+ 8,15,3342,52
45
+ 65,17,778,64
46
+ 22,99,6016,56
47
+ 62,29,6333,70
48
+ 98,84,9505,95
49
+ 80,77,2285,10
50
+ 36,30,3976,59
51
+ 67,26,9206,1
52
+ 23,71,8599,77
53
+ 73,68,301,87
54
+ 49,83,1646,58
55
+ 93,58,9886,90
56
+ 93,72,2769,54
57
+ 65,39,5049,44
58
+ 88,45,8860,17
59
+ 44,75,9101,42
60
+ 67,88,8394,76
61
+ 50,5,3779,17
62
+ 11,72,1959,90
63
+ 20,82,4027,39
64
+ 53,28,6764,60
65
+ 30,87,1699,4
66
+ 12,82,7322,37
67
+ 3,12,6074,30
68
+ 89,24,7596,82
69
+ 24,33,968,43
70
+ 32,29,9256,90
71
+ 3,16,6929,78
72
+ 99,41,2975,24
73
+ 47,22,1187,44
74
+ 13,78,4522,3
75
+ 86,33,2686,84
76
+ 33,61,2346,89
77
+ 66,41,6627,70
78
+ 85,61,9907,68
79
+ 15,90,8237,79
80
+ 71,18,7380,93
81
+ 38,43,9697,79
82
+ 96,33,6127,31
83
+ 51,61,8693,24
84
+ 96,9,8035,3
85
+ 22,26,2880,39
86
+ 1,36,2187,43
87
+ 64,97,2084,95
88
+ 94,4,6106,49
89
+ 14,9,5775,89
90
+ 32,99,4837,96
91
+ 30,77,2561,77
92
+ 89,83,9732,54
93
+ 98,27,5377,14
94
+ 8,80,6647,97
95
+ 35,60,3717,18
96
+ 19,95,1963,57
97
+ 78,50,1372,78
98
+ 98,93,879,89
99
+ 87,95,7505,49
100
+ 75,69,6088,59
101
+ 71,39,2077,77
datasets/weather_forecasting.csv ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ day,temperature,humidity,rainfall,forecast_temp
2
+ 2023-01-01,11,37,5,25
3
+ 2023-01-02,13,27,10,48
4
+ 2023-01-03,24,27,58,74
5
+ 2023-01-04,30,31,83,52
6
+ 2023-01-05,14,37,79,88
7
+ 2023-01-06,18,35,96,46
8
+ 2023-01-07,28,38,93,40
9
+ 2023-01-08,35,11,60,43
10
+ 2023-01-09,31,34,93,52
11
+ 2023-01-10,34,33,30,69
12
+ 2023-01-11,35,27,17,99
13
+ 2023-01-12,34,22,85,69
14
+ 2023-01-13,22,24,12,45
15
+ 2023-01-14,12,31,43,1
16
+ 2023-01-15,37,34,82,12
17
+ 2023-01-16,27,34,28,23
18
+ 2023-01-17,19,15,44,79
19
+ 2023-01-18,14,20,95,95
20
+ 2023-01-19,10,22,90,38
21
+ 2023-01-20,13,10,5,35
22
+ 2023-01-21,32,18,17,49
23
+ 2023-01-22,25,39,24,31
24
+ 2023-01-23,36,24,68,81
25
+ 2023-01-24,25,12,50,38
26
+ 2023-01-25,19,39,40,94
27
+ 2023-01-26,20,27,73,17
28
+ 2023-01-27,37,20,93,38
29
+ 2023-01-28,11,36,11,21
30
+ 2023-01-29,17,29,71,22
31
+ 2023-01-30,14,37,84,29
32
+ 2023-01-31,19,10,91,6
33
+ 2023-02-01,19,15,14,11
34
+ 2023-02-02,39,19,96,41
35
+ 2023-02-03,14,31,32,50
36
+ 2023-02-04,25,19,67,68
37
+ 2023-02-05,20,32,90,70
38
+ 2023-02-06,27,16,22,46
39
+ 2023-02-07,18,31,7,5
40
+ 2023-02-08,30,17,43,19
41
+ 2023-02-09,33,25,40,53
42
+ 2023-02-10,10,11,16,97
43
+ 2023-02-11,27,34,89,4
44
+ 2023-02-12,21,28,59,46
45
+ 2023-02-13,29,14,41,50
46
+ 2023-02-14,25,14,33,96
47
+ 2023-02-15,13,25,69,8
48
+ 2023-02-16,34,21,95,11
49
+ 2023-02-17,31,32,46,56
50
+ 2023-02-18,37,16,85,33
51
+ 2023-02-19,25,31,84,51
52
+ 2023-02-20,10,17,76,52
53
+ 2023-02-21,11,33,2,85
54
+ 2023-02-22,18,11,35,20
55
+ 2023-02-23,35,10,49,63
56
+ 2023-02-24,28,15,84,64
57
+ 2023-02-25,20,18,49,94
58
+ 2023-02-26,38,14,75,23
59
+ 2023-02-27,24,22,97,98
60
+ 2023-02-28,20,13,13,97
61
+ 2023-03-01,30,33,67,60
62
+ 2023-03-02,37,12,31,6
63
+ 2023-03-03,22,28,86,43
64
+ 2023-03-04,25,27,3,32
65
+ 2023-03-05,38,19,50,50
66
+ 2023-03-06,30,32,99,30
67
+ 2023-03-07,14,25,21,98
68
+ 2023-03-08,29,15,70,91
69
+ 2023-03-09,25,39,53,59
70
+ 2023-03-10,27,19,99,28
71
+ 2023-03-11,28,20,55,86
72
+ 2023-03-12,39,14,79,40
73
+ 2023-03-13,25,12,68,13
74
+ 2023-03-14,29,29,49,2
75
+ 2023-03-15,22,13,5,34
76
+ 2023-03-16,37,30,95,30
77
+ 2023-03-17,14,18,20,3
78
+ 2023-03-18,17,20,88,11
79
+ 2023-03-19,10,32,61,46
80
+ 2023-03-20,31,21,65,21
81
+ 2023-03-21,37,32,77,87
82
+ 2023-03-22,26,10,77,63
83
+ 2023-03-23,11,22,77,76
84
+ 2023-03-24,15,32,13,3
85
+ 2023-03-25,33,17,31,8
86
+ 2023-03-26,14,11,70,79
87
+ 2023-03-27,16,21,96,93
88
+ 2023-03-28,15,31,23,24
89
+ 2023-03-29,22,38,67,72
90
+ 2023-03-30,15,13,25,22
91
+ 2023-03-31,12,31,87,69
92
+ 2023-04-01,36,38,28,81
93
+ 2023-04-02,39,16,23,6
94
+ 2023-04-03,26,22,45,84
95
+ 2023-04-04,11,39,51,20
96
+ 2023-04-05,30,21,1,45
97
+ 2023-04-06,33,31,67,26
98
+ 2023-04-07,13,36,19,34
99
+ 2023-04-08,36,27,6,31
100
+ 2023-04-09,34,22,27,91
101
+ 2023-04-10,11,21,91,40