Surbhi commited on
Commit
5bb134b
Β·
1 Parent(s): f28fb28

Feature extraction and model training

Browse files
Files changed (1) hide show
  1. app.py +39 -38
app.py CHANGED
@@ -66,8 +66,46 @@ dataset_mapping = {
66
  dataset_path = dataset_mapping.get(problem, "datasets/spam_detection.csv")
67
  df = pd.read_csv(dataset_path)
68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
  # Display dataset
70
- st.subheader("Sample Dataset")
71
  st.write(df.head())
72
 
73
  # Preprocessing Steps
@@ -163,41 +201,4 @@ if model in ["Random Forest", "Decision Tree"]:
163
  sns.barplot(x=importance_df["Importance"], y=importance_df["Feature"], ax=ax)
164
  st.pyplot(fig)
165
 
166
- # Show and Download Generated Code
167
- generated_code = f"""
168
- # AI Model Code
169
- import pandas as pd
170
- from sklearn.model_selection import train_test_split
171
- from sklearn.preprocessing import StandardScaler
172
- from {model_instance.__module__} import {model_instance.__class__.__name__}
173
-
174
- # Load Data
175
- df = pd.read_csv('{dataset_path}')
176
- X = df.iloc[:, :-1]
177
- y = df.iloc[:, -1]
178
-
179
- # Train/Test Split
180
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
181
-
182
- # Scaling
183
- scaler = StandardScaler()
184
- X_train = scaler.fit_transform(X_train)
185
- X_test = scaler.transform(X_test)
186
-
187
- # Train Model
188
- model = {model_instance.__class__.__name__}()
189
- model.fit(X_train, y_train)
190
-
191
- # Predict
192
- y_pred = model.predict(X_test)
193
- print(y_pred)
194
- """
195
-
196
- st.subheader("πŸ“œ Generated Code")
197
- st.code(generated_code, language="python")
198
-
199
- # Download buttons
200
- st.download_button("πŸ“₯ Download Python Script (.py)", generated_code, file_name="ai_model.py", mime="text/x-python")
201
- st.download_button("πŸ“₯ Download Jupyter Notebook (.ipynb)", json.dumps({"cells": [{"cell_type": "code", "source": generated_code.split("\n"), "metadata": {}}], "metadata": {}, "nbformat": 4, "nbformat_minor": 2}), file_name="ai_model.ipynb", mime="application/json")
202
-
203
  st.success("Code generated! Download and start using it! πŸš€")
 
66
  dataset_path = dataset_mapping.get(problem, "datasets/spam_detection.csv")
67
  df = pd.read_csv(dataset_path)
68
 
69
+ # Generated AI Code
70
+ generated_code = f"""
71
+ # AI Model Code
72
+ import pandas as pd
73
+ from sklearn.model_selection import train_test_split
74
+ from sklearn.preprocessing import StandardScaler
75
+ from {model.__module__} import {model.__class__.__name__}
76
+
77
+ # Load Data
78
+ df = pd.read_csv('{dataset_path}')
79
+ X = df.iloc[:, :-1]
80
+ y = df.iloc[:, -1]
81
+
82
+ # Train/Test Split
83
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
84
+
85
+ # Scaling
86
+ scaler = StandardScaler()
87
+ X_train = scaler.fit_transform(X_train)
88
+ X_test = scaler.transform(X_test)
89
+
90
+ # Train Model
91
+ model = {model.__class__.__name__}()
92
+ model.fit(X_train, y_train)
93
+
94
+ # Predict
95
+ y_pred = model.predict(X_test)
96
+ print(y_pred)
97
+ """
98
+
99
+ # Display AI Code
100
+ st.subheader("πŸ“œ Generated AI Model Code")
101
+ st.code(generated_code, language="python")
102
+
103
+ # Download Buttons (Top of UI)
104
+ st.download_button("πŸ“₯ Download Python Script (.py)", generated_code, file_name="ai_model.py", mime="text/x-python")
105
+ st.download_button("πŸ“₯ Download Jupyter Notebook (.ipynb)", json.dumps({"cells": [{"cell_type": "code", "source": generated_code.split("\n"), "metadata": {}}], "metadata": {}, "nbformat": 4, "nbformat_minor": 2}), file_name="ai_model.ipynb", mime="application/json")
106
+
107
  # Display dataset
108
+ st.subheader("πŸ“Š Sample Dataset")
109
  st.write(df.head())
110
 
111
  # Preprocessing Steps
 
201
  sns.barplot(x=importance_df["Importance"], y=importance_df["Feature"], ax=ax)
202
  st.pyplot(fig)
203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204
  st.success("Code generated! Download and start using it! πŸš€")