Spaces:
Sleeping
Sleeping
Surbhi
commited on
Commit
Β·
f28fb28
1
Parent(s):
a15c8e6
Feature extraction and model training
Browse files
app.py
CHANGED
@@ -3,13 +3,15 @@ import pandas as pd
|
|
3 |
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
5 |
import seaborn as sns
|
6 |
-
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
9 |
from sklearn.feature_selection import SelectKBest, f_classif
|
10 |
from sklearn.impute import SimpleImputer
|
11 |
-
from imblearn.over_sampling import SMOTE
|
12 |
from sklearn.metrics import accuracy_score, classification_report, mean_squared_error, mean_absolute_error, r2_score
|
|
|
|
|
13 |
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
|
14 |
from sklearn.svm import SVC, SVR
|
15 |
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
@@ -48,9 +50,18 @@ problems = {
|
|
48 |
|
49 |
problem = st.sidebar.selectbox("Choose a Problem:", problems[task][model])
|
50 |
|
51 |
-
# Dataset
|
52 |
-
dataset_mapping = {
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
dataset_path = dataset_mapping.get(problem, "datasets/spam_detection.csv")
|
56 |
df = pd.read_csv(dataset_path)
|
@@ -80,8 +91,8 @@ for col in df.select_dtypes(include=['object']).columns:
|
|
80 |
df[col] = label_encoders[col].fit_transform(df[col])
|
81 |
|
82 |
# Split Data
|
83 |
-
X = df.iloc[:, :-1]
|
84 |
-
y = df.iloc[:, -1]
|
85 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
86 |
|
87 |
# Feature Scaling
|
@@ -90,31 +101,25 @@ X_train = scaler.fit_transform(X_train)
|
|
90 |
X_test = scaler.transform(X_test)
|
91 |
|
92 |
# Feature Selection
|
93 |
-
selector = SelectKBest(score_func=f_classif, k=min(X.shape[1]
|
94 |
X_train = selector.fit_transform(X_train, y_train)
|
95 |
X_test = selector.transform(X_test)
|
96 |
|
97 |
-
# Handle imbalanced data
|
98 |
if task == "Classification":
|
99 |
-
|
100 |
-
min_class_samples = min(class_counts.values())
|
101 |
-
|
102 |
-
if min_class_samples > 5:
|
103 |
smote = SMOTE()
|
104 |
X_train, y_train = smote.fit_resample(X_train, y_train)
|
105 |
-
else:
|
106 |
-
ros = RandomOverSampler()
|
107 |
-
X_train, y_train = ros.fit_resample(X_train, y_train)
|
108 |
|
109 |
# Model Initialization
|
110 |
-
n_neighbors = min(5, len(y_train))
|
111 |
model_mapping = {
|
112 |
-
"KNN": KNeighborsClassifier(
|
113 |
"SVM": SVC() if task == "Classification" else SVR(),
|
114 |
"Random Forest": RandomForestClassifier() if task == "Classification" else RandomForestRegressor(),
|
115 |
"Decision Tree": DecisionTreeClassifier() if task == "Classification" else DecisionTreeRegressor(),
|
116 |
"Perceptron": Perceptron()
|
117 |
}
|
|
|
118 |
model_instance = model_mapping[model]
|
119 |
|
120 |
# Train Model
|
@@ -123,30 +128,76 @@ y_pred = model_instance.predict(X_test)
|
|
123 |
|
124 |
# Model Evaluation
|
125 |
st.subheader("π Model Evaluation")
|
|
|
126 |
if task == "Classification":
|
127 |
accuracy = accuracy_score(y_test, y_pred)
|
128 |
report = classification_report(y_test, y_pred, output_dict=True)
|
129 |
st.write(f"**Accuracy:** {accuracy:.2f}")
|
130 |
st.json(report)
|
131 |
-
|
|
|
132 |
mse = mean_squared_error(y_test, y_pred)
|
133 |
mae = mean_absolute_error(y_test, y_pred)
|
134 |
r2 = r2_score(y_test, y_pred)
|
135 |
-
st.write(f"**
|
|
|
|
|
136 |
|
137 |
# Data Visualization
|
138 |
st.subheader("π Data Visualization")
|
139 |
|
|
|
140 |
st.write("### π₯ Feature Correlation")
|
141 |
fig, ax = plt.subplots(figsize=(8, 5))
|
142 |
sns.heatmap(df.corr(), annot=True, cmap="coolwarm", ax=ax)
|
143 |
st.pyplot(fig)
|
144 |
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
147 |
st.write("### π Feature Importance")
|
148 |
fig, ax = plt.subplots()
|
149 |
sns.barplot(x=importance_df["Importance"], y=importance_df["Feature"], ax=ax)
|
150 |
st.pyplot(fig)
|
151 |
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
5 |
import seaborn as sns
|
6 |
+
import json
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
9 |
from sklearn.feature_selection import SelectKBest, f_classif
|
10 |
from sklearn.impute import SimpleImputer
|
11 |
+
from imblearn.over_sampling import SMOTE
|
12 |
from sklearn.metrics import accuracy_score, classification_report, mean_squared_error, mean_absolute_error, r2_score
|
13 |
+
|
14 |
+
# Import ML Models
|
15 |
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
|
16 |
from sklearn.svm import SVC, SVR
|
17 |
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
|
|
50 |
|
51 |
problem = st.sidebar.selectbox("Choose a Problem:", problems[task][model])
|
52 |
|
53 |
+
# Dataset Selection (Simulated dataset paths)
|
54 |
+
dataset_mapping = {
|
55 |
+
"Spam Detection": "datasets/spam_detection.csv",
|
56 |
+
"Disease Prediction": "datasets/disease_prediction.csv",
|
57 |
+
"Image Recognition": "datasets/image_recognition.csv",
|
58 |
+
"Text Classification": "datasets/text_classification.csv",
|
59 |
+
"Fraud Detection": "datasets/fraud_detection.csv",
|
60 |
+
"Customer Segmentation": "datasets/customer_segmentation.csv",
|
61 |
+
"Loan Approval": "datasets/loan_approval.csv",
|
62 |
+
"House Price Prediction": "datasets/house_price_prediction.csv",
|
63 |
+
"Sales Forecasting": "datasets/sales_forecasting.csv",
|
64 |
+
}
|
65 |
|
66 |
dataset_path = dataset_mapping.get(problem, "datasets/spam_detection.csv")
|
67 |
df = pd.read_csv(dataset_path)
|
|
|
91 |
df[col] = label_encoders[col].fit_transform(df[col])
|
92 |
|
93 |
# Split Data
|
94 |
+
X = df.iloc[:, :-1] # Features
|
95 |
+
y = df.iloc[:, -1] # Target
|
96 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
97 |
|
98 |
# Feature Scaling
|
|
|
101 |
X_test = scaler.transform(X_test)
|
102 |
|
103 |
# Feature Selection
|
104 |
+
selector = SelectKBest(score_func=f_classif, k=min(5, X.shape[1])) # Ensure k does not exceed available features
|
105 |
X_train = selector.fit_transform(X_train, y_train)
|
106 |
X_test = selector.transform(X_test)
|
107 |
|
108 |
+
# Handle imbalanced data (only for classification)
|
109 |
if task == "Classification":
|
110 |
+
if len(set(y_train)) > 1 and len(y_train) > 5: # Avoid SMOTE errors
|
|
|
|
|
|
|
111 |
smote = SMOTE()
|
112 |
X_train, y_train = smote.fit_resample(X_train, y_train)
|
|
|
|
|
|
|
113 |
|
114 |
# Model Initialization
|
|
|
115 |
model_mapping = {
|
116 |
+
"KNN": KNeighborsClassifier() if task == "Classification" else KNeighborsRegressor(),
|
117 |
"SVM": SVC() if task == "Classification" else SVR(),
|
118 |
"Random Forest": RandomForestClassifier() if task == "Classification" else RandomForestRegressor(),
|
119 |
"Decision Tree": DecisionTreeClassifier() if task == "Classification" else DecisionTreeRegressor(),
|
120 |
"Perceptron": Perceptron()
|
121 |
}
|
122 |
+
|
123 |
model_instance = model_mapping[model]
|
124 |
|
125 |
# Train Model
|
|
|
128 |
|
129 |
# Model Evaluation
|
130 |
st.subheader("π Model Evaluation")
|
131 |
+
|
132 |
if task == "Classification":
|
133 |
accuracy = accuracy_score(y_test, y_pred)
|
134 |
report = classification_report(y_test, y_pred, output_dict=True)
|
135 |
st.write(f"**Accuracy:** {accuracy:.2f}")
|
136 |
st.json(report)
|
137 |
+
|
138 |
+
elif task == "Regression":
|
139 |
mse = mean_squared_error(y_test, y_pred)
|
140 |
mae = mean_absolute_error(y_test, y_pred)
|
141 |
r2 = r2_score(y_test, y_pred)
|
142 |
+
st.write(f"**Mean Squared Error (MSE):** {mse:.4f}")
|
143 |
+
st.write(f"**Mean Absolute Error (MAE):** {mae:.4f}")
|
144 |
+
st.write(f"**RΒ² Score:** {r2:.4f}")
|
145 |
|
146 |
# Data Visualization
|
147 |
st.subheader("π Data Visualization")
|
148 |
|
149 |
+
# Heatmap
|
150 |
st.write("### π₯ Feature Correlation")
|
151 |
fig, ax = plt.subplots(figsize=(8, 5))
|
152 |
sns.heatmap(df.corr(), annot=True, cmap="coolwarm", ax=ax)
|
153 |
st.pyplot(fig)
|
154 |
|
155 |
+
# Feature Importance (for tree-based models)
|
156 |
+
if model in ["Random Forest", "Decision Tree"]:
|
157 |
+
feature_importances = model_instance.feature_importances_
|
158 |
+
feature_names = X.columns
|
159 |
+
importance_df = pd.DataFrame({"Feature": feature_names, "Importance": feature_importances}).sort_values(by="Importance", ascending=False)
|
160 |
+
|
161 |
st.write("### π Feature Importance")
|
162 |
fig, ax = plt.subplots()
|
163 |
sns.barplot(x=importance_df["Importance"], y=importance_df["Feature"], ax=ax)
|
164 |
st.pyplot(fig)
|
165 |
|
166 |
+
# Show and Download Generated Code
|
167 |
+
generated_code = f"""
|
168 |
+
# AI Model Code
|
169 |
+
import pandas as pd
|
170 |
+
from sklearn.model_selection import train_test_split
|
171 |
+
from sklearn.preprocessing import StandardScaler
|
172 |
+
from {model_instance.__module__} import {model_instance.__class__.__name__}
|
173 |
+
|
174 |
+
# Load Data
|
175 |
+
df = pd.read_csv('{dataset_path}')
|
176 |
+
X = df.iloc[:, :-1]
|
177 |
+
y = df.iloc[:, -1]
|
178 |
+
|
179 |
+
# Train/Test Split
|
180 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
181 |
+
|
182 |
+
# Scaling
|
183 |
+
scaler = StandardScaler()
|
184 |
+
X_train = scaler.fit_transform(X_train)
|
185 |
+
X_test = scaler.transform(X_test)
|
186 |
+
|
187 |
+
# Train Model
|
188 |
+
model = {model_instance.__class__.__name__}()
|
189 |
+
model.fit(X_train, y_train)
|
190 |
+
|
191 |
+
# Predict
|
192 |
+
y_pred = model.predict(X_test)
|
193 |
+
print(y_pred)
|
194 |
+
"""
|
195 |
+
|
196 |
+
st.subheader("π Generated Code")
|
197 |
+
st.code(generated_code, language="python")
|
198 |
+
|
199 |
+
# Download buttons
|
200 |
+
st.download_button("π₯ Download Python Script (.py)", generated_code, file_name="ai_model.py", mime="text/x-python")
|
201 |
+
st.download_button("π₯ Download Jupyter Notebook (.ipynb)", json.dumps({"cells": [{"cell_type": "code", "source": generated_code.split("\n"), "metadata": {}}], "metadata": {}, "nbformat": 4, "nbformat_minor": 2}), file_name="ai_model.ipynb", mime="application/json")
|
202 |
+
|
203 |
+
st.success("Code generated! Download and start using it! π")
|