ml-code-generator / datasets /disease_prediction.csv
Surbhi
Feature extraction and model training
cedd211
raw
history blame
1.82 kB
age,gender,blood_pressure,cholesterol,diabetes,disease_present
67,43,89,24,39,54
41,41,31,76,94,82
77,22,29,81,67,67
58,2,24,31,92,99
46,76,17,29,28,9
84,10,98,65,26,82
22,14,83,93,25,5
84,41,35,92,75,37
30,30,20,55,51,13
33,56,94,3,50,37
90,7,28,21,23,44
54,58,25,77,47,21
88,93,77,81,95,20
16,97,9,85,40,89
89,13,99,33,27,39
32,95,53,50,68,95
41,17,41,35,42,32
31,85,35,18,23,77
55,9,15,89,45,97
15,13,80,76,21,50
1,80,14,15,83,67
32,32,65,67,60,74
62,69,84,33,32,51
26,10,96,47,23,70
50,66,35,27,6,2
52,59,76,56,59,67
94,36,1,33,68,72
41,89,48,26,45,34
12,66,30,10,62,76
17,73,9,33,46,72
16,83,97,32,11,40
86,81,31,50,34,98
74,56,69,25,34,59
25,94,61,80,12,99
77,57,21,41,20,51
55,48,86,3,46,66
10,92,80,73,65,38
48,68,28,14,56,44
32,54,36,79,8,84
34,6,82,4,6,92
87,96,9,79,48,69
44,26,54,41,18,84
35,12,39,68,70,73
77,75,64,2,93,45
87,22,56,82,90,5
36,89,73,63,37,62
63,84,93,91,29,29
35,14,90,16,49,68
15,64,8,21,47,87
51,11,87,84,76,88
42,61,76,98,24,86
67,51,26,20,35,95
97,35,86,84,88,71
16,53,79,8,2,41
46,55,62,17,60,19
64,17,67,97,86,53
59,30,12,71,85,77
83,33,36,63,85,87
2,3,1,2,95,22
29,84,97,69,52,50
18,89,17,25,8,16
81,10,57,17,62,91
39,17,83,3,66,95
74,27,34,12,85,78
80,95,82,59,34,93
80,15,4,72,1,80
54,38,31,14,69,4
30,78,57,69,55,40
49,90,78,50,80,44
83,30,88,68,31,64
58,42,76,63,89,53
99,79,50,74,29,16
39,5,87,55,34,67
17,44,67,14,43,86
92,97,86,84,25,51
26,54,43,72,45,99
88,58,8,79,87,63
27,96,83,64,30,74
25,55,80,40,13,89
19,42,99,4,33,41
63,36,73,16,77,89
57,1,36,7,43,35
52,55,28,91,54,36
78,56,28,84,8,94
46,95,93,65,80,62
88,89,88,19,44,36
44,28,14,17,11,16
25,9,32,72,6,5
34,63,44,58,40,98
13,20,47,7,56,47
36,18,62,20,56,75
70,38,54,41,47,33
88,97,13,34,77,27
27,81,45,89,74,90
91,56,51,61,5,2
1,14,95,46,70,70
65,1,88,44,22,93
47,81,91,37,67,76
98,79,79,72,39,22
21,37,40,74,3,14