File size: 5,613 Bytes
a73d60f
 
b2fd176
 
a73d60f
 
b2fd176
 
 
 
 
 
 
 
 
 
a73d60f
b2fd176
 
a73d60f
 
 
 
 
 
b2fd176
 
 
a73d60f
b2fd176
 
 
a73d60f
b2fd176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a73d60f
 
 
 
 
 
 
b2fd176
 
a73d60f
 
 
 
b2fd176
a73d60f
b2fd176
 
 
 
 
 
 
 
 
a73d60f
 
b2fd176
 
 
 
 
 
 
 
 
 
 
 
a73d60f
 
b2fd176
a73d60f
 
 
 
b2fd176
 
 
 
 
 
 
 
 
a73d60f
b2fd176
 
a73d60f
 
b2fd176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a73d60f
 
b2fd176
 
a73d60f
b2fd176
 
 
 
a73d60f
b2fd176
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import streamlit as st
import pandas as pd
import numpy as np
import joblib
import textwrap

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.impute import SimpleImputer
from sklearn.feature_selection import SelectKBest, f_classif, f_regression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, mean_absolute_error, mean_squared_error, r2_score
from imblearn.over_sampling import SMOTE

# Streamlit UI
st.title("πŸš€ AI Code Generator")
st.markdown("Generate & Train ML Models with Preprocessing and Feature Selection")

# Sidebar UI
st.sidebar.title("Choose Options")
model_options = ["KNN", "SVM", "Random Forest", "Decision Tree", "Perceptron"]
model = st.sidebar.selectbox("Choose a Model:", model_options)

task_options = ["Classification", "Regression"]
task = st.sidebar.selectbox("Choose a Task:", task_options)

# Load Dataset
st.markdown("### Upload your Dataset (CSV)")
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")

if uploaded_file:
    data = pd.read_csv(uploaded_file)
    st.write("Preview of Dataset:", data.head())

    # Preprocessing Steps
    st.markdown("### Data Preprocessing Steps")
    
    # Handling Missing Values
    st.write("βœ… Handling missing values using `SimpleImputer`")
    imputer = SimpleImputer(strategy="mean")
    data.fillna(data.mean(), inplace=True)

    # Encoding Categorical Variables
    st.write("βœ… Encoding categorical variables")
    for col in data.select_dtypes(include=["object"]).columns:
        data[col] = LabelEncoder().fit_transform(data[col])

    # Splitting Data
    X = data.iloc[:, :-1]  # Features
    y = data.iloc[:, -1]   # Target

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

    # Feature Scaling
    st.write("βœ… Applying StandardScaler")
    scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)

    # Handle Imbalanced Dataset using SMOTE
    if task == "Classification":
        st.write("βœ… Handling Imbalanced Dataset using SMOTE")
        smote = SMOTE()
        X_train, y_train = smote.fit_resample(X_train, y_train)

    # Feature Selection
    st.write("βœ… Selecting Best Features")
    selector = SelectKBest(f_classif if task == "Classification" else f_regression, k=min(5, X.shape[1]))
    X_train = selector.fit_transform(X_train, y_train)
    X_test = selector.transform(X_test)

    # Model Training
    model_mapping = {
        "KNN": "KNeighborsClassifier" if task == "Classification" else "KNeighborsRegressor",
        "SVM": "SVC" if task == "Classification" else "SVR",
        "Random Forest": "RandomForestClassifier" if task == "Classification" else "RandomForestRegressor",
        "Decision Tree": "DecisionTreeClassifier" if task == "Classification" else "DecisionTreeRegressor",
        "Perceptron": "Perceptron" if task == "Classification" else "Perceptron"
    }

    model_class = model_mapping[model]

    template = f"""
import numpy as np
import pandas as pd
import joblib

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.impute import SimpleImputer
from sklearn.feature_selection import SelectKBest, f_classif, f_regression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, mean_absolute_error, mean_squared_error, r2_score
from imblearn.over_sampling import SMOTE
from sklearn.{model.lower()} import {model_class}

# Load Dataset
data = pd.read_csv('dataset.csv')

# Handling Missing Values
imputer = SimpleImputer(strategy="mean")
data.fillna(data.mean(), inplace=True)

# Encoding Categorical Variables
for col in data.select_dtypes(include=["object"]).columns:
    data[col] = LabelEncoder().fit_transform(data[col])

# Splitting Data
X = data.iloc[:, :-1]
y = data.iloc[:, -1]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Feature Scaling
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# Handle Imbalanced Data (SMOTE)
if "{task}" == "Classification":
    smote = SMOTE()
    X_train, y_train = smote.fit_resample(X_train, y_train)

# Feature Selection
selector = SelectKBest(f_classif if "{task}" == "Classification" else f_regression, k=min(5, X.shape[1]))
X_train = selector.fit_transform(X_train, y_train)
X_test = selector.transform(X_test)

# Model Training
model = {model_class}()
model.fit(X_train, y_train)

# Save Trained Model
joblib.dump(model, 'models/trained_model.pkl')

# Evaluation Metrics
if "{task}" == "Classification":
    y_pred = model.predict(X_test)
    print("Accuracy:", accuracy_score(y_test, y_pred))
    print("Precision:", precision_score(y_test, y_pred, average='weighted'))
    print("Recall:", recall_score(y_test, y_pred, average='weighted'))
    print("F1 Score:", f1_score(y_test, y_pred, average='weighted'))
else:
    y_pred = model.predict(X_test)
    print("Mean Absolute Error:", mean_absolute_error(y_test, y_pred))
    print("Mean Squared Error:", mean_squared_error(y_test, y_pred))
    print("R2 Score:", r2_score(y_test, y_pred))
"""

    st.code(template, language="python")
    st.download_button("πŸ“₯ Download AI Model Code", template, "ai_model.py")

    # Save Model
    model_instance = eval(model_class)()
    model_instance.fit(X_train, y_train)
    joblib.dump(model_instance, "models/trained_model.pkl")

    st.success("βœ… Model trained and saved as `trained_model.pkl`")