Spaces:
Runtime error
Runtime error
Create model.py
Browse files- flux/model.py +135 -0
flux/model.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from torch import Tensor, nn
|
| 5 |
+
|
| 6 |
+
from flux.modules.layers import (
|
| 7 |
+
DoubleStreamBlock,
|
| 8 |
+
EmbedND,
|
| 9 |
+
LastLayer,
|
| 10 |
+
MLPEmbedder,
|
| 11 |
+
SingleStreamBlock,
|
| 12 |
+
timestep_embedding,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@dataclass
|
| 17 |
+
class FluxParams:
|
| 18 |
+
in_channels: int
|
| 19 |
+
vec_in_dim: int
|
| 20 |
+
context_in_dim: int
|
| 21 |
+
hidden_size: int
|
| 22 |
+
mlp_ratio: float
|
| 23 |
+
num_heads: int
|
| 24 |
+
depth: int
|
| 25 |
+
depth_single_blocks: int
|
| 26 |
+
axes_dim: list[int]
|
| 27 |
+
theta: int
|
| 28 |
+
qkv_bias: bool
|
| 29 |
+
guidance_embed: bool
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class Flux(nn.Module):
|
| 33 |
+
"""
|
| 34 |
+
Transformer model for flow matching on sequences.
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
def __init__(self, params: FluxParams):
|
| 38 |
+
super().__init__()
|
| 39 |
+
|
| 40 |
+
self.params = params
|
| 41 |
+
self.in_channels = params.in_channels
|
| 42 |
+
self.out_channels = self.in_channels
|
| 43 |
+
if params.hidden_size % params.num_heads != 0:
|
| 44 |
+
raise ValueError(
|
| 45 |
+
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
| 46 |
+
)
|
| 47 |
+
pe_dim = params.hidden_size // params.num_heads
|
| 48 |
+
if sum(params.axes_dim) != pe_dim:
|
| 49 |
+
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
| 50 |
+
self.hidden_size = params.hidden_size
|
| 51 |
+
self.num_heads = params.num_heads
|
| 52 |
+
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
| 53 |
+
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
|
| 54 |
+
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
| 55 |
+
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
|
| 56 |
+
self.guidance_in = (
|
| 57 |
+
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
|
| 58 |
+
)
|
| 59 |
+
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
|
| 60 |
+
|
| 61 |
+
self.double_blocks = nn.ModuleList(
|
| 62 |
+
[
|
| 63 |
+
DoubleStreamBlock(
|
| 64 |
+
self.hidden_size,
|
| 65 |
+
self.num_heads,
|
| 66 |
+
mlp_ratio=params.mlp_ratio,
|
| 67 |
+
qkv_bias=params.qkv_bias,
|
| 68 |
+
)
|
| 69 |
+
for _ in range(params.depth)
|
| 70 |
+
]
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
self.single_blocks = nn.ModuleList(
|
| 74 |
+
[
|
| 75 |
+
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
|
| 76 |
+
for _ in range(params.depth_single_blocks)
|
| 77 |
+
]
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
|
| 81 |
+
|
| 82 |
+
self.pulid_ca = None
|
| 83 |
+
self.pulid_double_interval = 2
|
| 84 |
+
self.pulid_single_interval = 4
|
| 85 |
+
|
| 86 |
+
def forward(
|
| 87 |
+
self,
|
| 88 |
+
img: Tensor,
|
| 89 |
+
img_ids: Tensor,
|
| 90 |
+
txt: Tensor,
|
| 91 |
+
txt_ids: Tensor,
|
| 92 |
+
timesteps: Tensor,
|
| 93 |
+
y: Tensor,
|
| 94 |
+
guidance: Tensor = None,
|
| 95 |
+
id: Tensor = None,
|
| 96 |
+
id_weight: float = 1.0,
|
| 97 |
+
) -> Tensor:
|
| 98 |
+
if img.ndim != 3 or txt.ndim != 3:
|
| 99 |
+
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
| 100 |
+
|
| 101 |
+
# running on sequences img
|
| 102 |
+
img = self.img_in(img)
|
| 103 |
+
vec = self.time_in(timestep_embedding(timesteps, 256))
|
| 104 |
+
if self.params.guidance_embed:
|
| 105 |
+
if guidance is None:
|
| 106 |
+
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
| 107 |
+
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
|
| 108 |
+
vec = vec + self.vector_in(y)
|
| 109 |
+
txt = self.txt_in(txt)
|
| 110 |
+
|
| 111 |
+
ids = torch.cat((txt_ids, img_ids), dim=1)
|
| 112 |
+
pe = self.pe_embedder(ids)
|
| 113 |
+
|
| 114 |
+
ca_idx = 0
|
| 115 |
+
for i, block in enumerate(self.double_blocks):
|
| 116 |
+
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
| 117 |
+
|
| 118 |
+
if i % self.pulid_double_interval == 0 and id is not None:
|
| 119 |
+
img = img + id_weight * self.pulid_ca[ca_idx](id, img)
|
| 120 |
+
ca_idx += 1
|
| 121 |
+
|
| 122 |
+
img = torch.cat((txt, img), 1)
|
| 123 |
+
for i, block in enumerate(self.single_blocks):
|
| 124 |
+
x = block(img, vec=vec, pe=pe)
|
| 125 |
+
real_img, txt = x[:, txt.shape[1]:, ...], x[:, :txt.shape[1], ...]
|
| 126 |
+
|
| 127 |
+
if i % self.pulid_single_interval == 0 and id is not None:
|
| 128 |
+
real_img = real_img + id_weight * self.pulid_ca[ca_idx](id, real_img)
|
| 129 |
+
ca_idx += 1
|
| 130 |
+
|
| 131 |
+
img = torch.cat((txt, real_img), 1)
|
| 132 |
+
img = img[:, txt.shape[1] :, ...]
|
| 133 |
+
|
| 134 |
+
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
| 135 |
+
return img
|