Spaces:
Runtime error
Runtime error
Create sampling.py
Browse files- flux/sampling.py +161 -0
flux/sampling.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from typing import Callable
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from einops import rearrange, repeat
|
| 6 |
+
from torch import Tensor
|
| 7 |
+
|
| 8 |
+
from .model import Flux
|
| 9 |
+
from .modules.conditioner import HFEmbedder
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def get_noise(
|
| 13 |
+
num_samples: int,
|
| 14 |
+
height: int,
|
| 15 |
+
width: int,
|
| 16 |
+
device: torch.device,
|
| 17 |
+
dtype: torch.dtype,
|
| 18 |
+
seed: int,
|
| 19 |
+
):
|
| 20 |
+
return torch.randn(
|
| 21 |
+
num_samples,
|
| 22 |
+
16,
|
| 23 |
+
# allow for packing
|
| 24 |
+
2 * math.ceil(height / 16),
|
| 25 |
+
2 * math.ceil(width / 16),
|
| 26 |
+
device=device,
|
| 27 |
+
dtype=dtype,
|
| 28 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str) -> dict[str, Tensor]:
|
| 33 |
+
bs, c, h, w = img.shape
|
| 34 |
+
if bs == 1 and not isinstance(prompt, str):
|
| 35 |
+
bs = len(prompt)
|
| 36 |
+
|
| 37 |
+
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
| 38 |
+
if img.shape[0] == 1 and bs > 1:
|
| 39 |
+
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
| 40 |
+
|
| 41 |
+
img_ids = torch.zeros(h // 2, w // 2, 3)
|
| 42 |
+
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
| 43 |
+
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
| 44 |
+
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
| 45 |
+
|
| 46 |
+
if isinstance(prompt, str):
|
| 47 |
+
prompt = [prompt]
|
| 48 |
+
txt = t5(prompt)
|
| 49 |
+
if txt.shape[0] == 1 and bs > 1:
|
| 50 |
+
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
|
| 51 |
+
txt_ids = torch.zeros(bs, txt.shape[1], 3)
|
| 52 |
+
|
| 53 |
+
vec = clip(prompt)
|
| 54 |
+
if vec.shape[0] == 1 and bs > 1:
|
| 55 |
+
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
|
| 56 |
+
|
| 57 |
+
return {
|
| 58 |
+
"img": img,
|
| 59 |
+
"img_ids": img_ids.to(img.device),
|
| 60 |
+
"txt": txt.to(img.device),
|
| 61 |
+
"txt_ids": txt_ids.to(img.device),
|
| 62 |
+
"vec": vec.to(img.device),
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def time_shift(mu: float, sigma: float, t: Tensor):
|
| 67 |
+
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def get_lin_function(
|
| 71 |
+
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
|
| 72 |
+
) -> Callable[[float], float]:
|
| 73 |
+
m = (y2 - y1) / (x2 - x1)
|
| 74 |
+
b = y1 - m * x1
|
| 75 |
+
return lambda x: m * x + b
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def get_schedule(
|
| 79 |
+
num_steps: int,
|
| 80 |
+
image_seq_len: int,
|
| 81 |
+
base_shift: float = 0.5,
|
| 82 |
+
max_shift: float = 1.15,
|
| 83 |
+
shift: bool = True,
|
| 84 |
+
) -> list[float]:
|
| 85 |
+
# extra step for zero
|
| 86 |
+
timesteps = torch.linspace(1, 0, num_steps + 1)
|
| 87 |
+
|
| 88 |
+
# shifting the schedule to favor high timesteps for higher signal images
|
| 89 |
+
if shift:
|
| 90 |
+
# eastimate mu based on linear estimation between two points
|
| 91 |
+
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
|
| 92 |
+
timesteps = time_shift(mu, 1.0, timesteps)
|
| 93 |
+
|
| 94 |
+
return timesteps.tolist()
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def denoise(
|
| 98 |
+
model: Flux,
|
| 99 |
+
# model input
|
| 100 |
+
img: Tensor,
|
| 101 |
+
img_ids: Tensor,
|
| 102 |
+
txt: Tensor,
|
| 103 |
+
txt_ids: Tensor,
|
| 104 |
+
vec: Tensor,
|
| 105 |
+
timesteps: list[float],
|
| 106 |
+
guidance: float = 4.0,
|
| 107 |
+
id_weight=1.0,
|
| 108 |
+
id=None,
|
| 109 |
+
start_step=0,
|
| 110 |
+
uncond_id=None,
|
| 111 |
+
true_cfg=1.0,
|
| 112 |
+
timestep_to_start_cfg=1,
|
| 113 |
+
neg_txt=None,
|
| 114 |
+
neg_txt_ids=None,
|
| 115 |
+
neg_vec=None,
|
| 116 |
+
):
|
| 117 |
+
# this is ignored for schnell
|
| 118 |
+
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
| 119 |
+
use_true_cfg = abs(true_cfg - 1.0) > 1e-2
|
| 120 |
+
for i, (t_curr, t_prev) in enumerate(zip(timesteps[:-1], timesteps[1:])):
|
| 121 |
+
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
|
| 122 |
+
pred = model(
|
| 123 |
+
img=img,
|
| 124 |
+
img_ids=img_ids,
|
| 125 |
+
txt=txt,
|
| 126 |
+
txt_ids=txt_ids,
|
| 127 |
+
y=vec,
|
| 128 |
+
timesteps=t_vec,
|
| 129 |
+
guidance=guidance_vec,
|
| 130 |
+
id=id if i >= start_step else None,
|
| 131 |
+
id_weight=id_weight,
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
if use_true_cfg and i >= timestep_to_start_cfg:
|
| 135 |
+
neg_pred = model(
|
| 136 |
+
img=img,
|
| 137 |
+
img_ids=img_ids,
|
| 138 |
+
txt=neg_txt,
|
| 139 |
+
txt_ids=neg_txt_ids,
|
| 140 |
+
y=neg_vec,
|
| 141 |
+
timesteps=t_vec,
|
| 142 |
+
guidance=guidance_vec,
|
| 143 |
+
id=uncond_id if i >= start_step else None,
|
| 144 |
+
id_weight=id_weight,
|
| 145 |
+
)
|
| 146 |
+
pred = neg_pred + true_cfg * (pred - neg_pred)
|
| 147 |
+
|
| 148 |
+
img = img + (t_prev - t_curr) * pred
|
| 149 |
+
|
| 150 |
+
return img
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def unpack(x: Tensor, height: int, width: int) -> Tensor:
|
| 154 |
+
return rearrange(
|
| 155 |
+
x,
|
| 156 |
+
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
| 157 |
+
h=math.ceil(height / 16),
|
| 158 |
+
w=math.ceil(width / 16),
|
| 159 |
+
ph=2,
|
| 160 |
+
pw=2,
|
| 161 |
+
)
|