Spaces:
Runtime error
Runtime error
from matplotlib.pyplot import text | |
import numpy as np | |
import soundfile as sf | |
import yaml | |
import tensorflow as tf | |
from tensorflow_tts.inference import TFAutoModel | |
from tensorflow_tts.inference import AutoProcessor | |
from tensorflow_tts.inference import AutoConfig | |
import gradio as gr | |
MODEL_NAMES = [ | |
"Fastspeech2 + Melgan", | |
"Tacotron2 + Melgan", | |
] | |
fastspeech = TFAutoModel.from_pretrained("tensorspeech/tts-fastspeech-ljspeech-en", name="fastspeech") | |
fastspeech2 = TFAutoModel.from_pretrained("tensorspeech/tts-fastspeech2-ljspeech-en", name="fastspeech2") | |
tacotron2 = TFAutoModel.from_pretrained("tensorspeech/tts-tacotron2-ljspeech-en", name="tacotron2") | |
melgan = TFAutoModel.from_pretrained("tensorspeech/tts-melgan-ljspeech-en", name="melgan") | |
mb_melgan = TFAutoModel.from_pretrained("tensorspeech/tts-mb_melgan-ljspeech-en", name="mb_melgan") | |
MODEL_DICT = { | |
"Fastspeech2" : fastspeech2, | |
"Tacotron2" : tacotron2, | |
"Melgan": melgan, | |
"MB-Melgan": mb_melgan, | |
} | |
def inference(input): | |
input_text, model_type = input[0], input[1] | |
text2mel_name, vocoder_name = model_type.split(" + ") | |
text2mel_model, vocoder_model = MODEL_DICT[text2mel_name], MODEL_DICT[vocoder_name] | |
processor = AutoProcessor.from_pretrained(text2mel_name) | |
input_ids = processor.text_to_sequence(input_text) | |
if text2mel_name == "Tacotron": | |
_, mel_outputs, stop_token_prediction, alignment_history = text2mel_model.inference( | |
tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0), | |
tf.convert_to_tensor([len(input_ids)], tf.int32), | |
tf.convert_to_tensor([0], dtype=tf.int32) | |
) | |
elif text2mel_name == "Fastspeech": | |
mel_before, mel_outputs, duration_outputs = text2mel_model.inference( | |
input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0), | |
speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32), | |
speed_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32), | |
) | |
elif text2mel_name == "Fastspeech2": | |
mel_before, mel_outputs, duration_outputs, _, _ = text2mel_model.inference( | |
tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0), | |
speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32), | |
speed_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32), | |
f0_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32), | |
energy_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32), | |
) | |
else: | |
raise ValueError("Only TACOTRON, FASTSPEECH, FASTSPEECH2 are supported on text2mel_name") | |
# vocoder part | |
if vocoder_name == "Melgan": | |
audio = vocoder_model(mel_outputs)[0, :, 0] | |
elif vocoder_name == "MB-Melgan": | |
audio = vocoder_model(mel_outputs)[0, :, 0] | |
else: | |
raise ValueError("Only MELGAN, MELGAN-STFT and MB_MELGAN are supported on vocoder_name") | |
# if text2mel_name == "TACOTRON": | |
# return mel_outputs.numpy(), alignment_history.numpy(), audio.numpy() | |
# else: | |
# return mel_outputs.numpy(), audio.numpy() | |
sf.write('./audio_after.wav', audio, 22050, "PCM_16") | |
return './audio_after.wav' | |
inputs = [ | |
gr.inputs.Textbox(lines=5, label="Input Text"), | |
gr.inputs.Radio(label="Pick a TTS Model",choices=MODEL_NAMES,) | |
] | |
outputs = gr.outputs.Audio(type="file", label="Output Audio") | |
title = "Tensorflow TTS" | |
description = "Gradio demo for TensorFlowTTS: Real-Time State-of-the-art Speech Synthesis for Tensorflow 2. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://tensorspeech.github.io/TensorFlowTTS/'>TensorFlowTTS: Real-Time State-of-the-art Speech Synthesis for Tensorflow 2</a> | <a href='https://github.com/TensorSpeech/TensorFlowTTS'>Github Repo</a></p>" | |
examples = [ | |
["TensorFlowTTS provides real-time state-of-the-art speech synthesis architectures such as Tacotron-2, Melgan, Multiband-Melgan, FastSpeech, FastSpeech2 based-on TensorFlow 2."], | |
["With Tensorflow 2, we can speed-up training/inference progress, optimizer further by using fake-quantize aware and pruning, make TTS models can be run faster than real-time and be able to deploy on mobile devices or embedded systems."] | |
] | |
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples).launch() |