Spaces:
Runtime error
Runtime error
File size: 4,556 Bytes
346f0e5 3ff8c18 346f0e5 3ff8c18 346f0e5 3ff8c18 346f0e5 3ff8c18 346f0e5 3ff8c18 346f0e5 3ff8c18 346f0e5 226405b 346f0e5 3ff8c18 346f0e5 3ff8c18 346f0e5 3ff8c18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
from matplotlib.pyplot import text
import numpy as np
import soundfile as sf
import yaml
import tensorflow as tf
from tensorflow_tts.inference import TFAutoModel
from tensorflow_tts.inference import AutoProcessor
from tensorflow_tts.inference import AutoConfig
import gradio as gr
MODEL_NAMES = [
"Fastspeech2 + Melgan",
"Tacotron2 + Melgan",
]
fastspeech = TFAutoModel.from_pretrained("tensorspeech/tts-fastspeech-ljspeech-en", name="fastspeech")
fastspeech2 = TFAutoModel.from_pretrained("tensorspeech/tts-fastspeech2-ljspeech-en", name="fastspeech2")
tacotron2 = TFAutoModel.from_pretrained("tensorspeech/tts-tacotron2-ljspeech-en", name="tacotron2")
melgan = TFAutoModel.from_pretrained("tensorspeech/tts-melgan-ljspeech-en", name="melgan")
mb_melgan = TFAutoModel.from_pretrained("tensorspeech/tts-mb_melgan-ljspeech-en", name="mb_melgan")
MODEL_DICT = {
"Fastspeech2" : fastspeech2,
"Tacotron2" : tacotron2,
"Melgan": melgan,
"MB-Melgan": mb_melgan,
}
def inference(input):
input_text, model_type = input[0], input[1]
text2mel_name, vocoder_name = model_type.split(" + ")
text2mel_model, vocoder_model = MODEL_DICT[text2mel_name], MODEL_DICT[vocoder_name]
processor = AutoProcessor.from_pretrained(text2mel_name)
input_ids = processor.text_to_sequence(input_text)
if text2mel_name == "Tacotron":
_, mel_outputs, stop_token_prediction, alignment_history = text2mel_model.inference(
tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0),
tf.convert_to_tensor([len(input_ids)], tf.int32),
tf.convert_to_tensor([0], dtype=tf.int32)
)
elif text2mel_name == "Fastspeech":
mel_before, mel_outputs, duration_outputs = text2mel_model.inference(
input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0),
speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32),
speed_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32),
)
elif text2mel_name == "Fastspeech2":
mel_before, mel_outputs, duration_outputs, _, _ = text2mel_model.inference(
tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0),
speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32),
speed_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32),
f0_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32),
energy_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32),
)
else:
raise ValueError("Only TACOTRON, FASTSPEECH, FASTSPEECH2 are supported on text2mel_name")
# vocoder part
if vocoder_name == "Melgan":
audio = vocoder_model(mel_outputs)[0, :, 0]
elif vocoder_name == "MB-Melgan":
audio = vocoder_model(mel_outputs)[0, :, 0]
else:
raise ValueError("Only MELGAN, MELGAN-STFT and MB_MELGAN are supported on vocoder_name")
# if text2mel_name == "TACOTRON":
# return mel_outputs.numpy(), alignment_history.numpy(), audio.numpy()
# else:
# return mel_outputs.numpy(), audio.numpy()
sf.write('./audio_after.wav', audio, 22050, "PCM_16")
return './audio_after.wav'
inputs = [
gr.inputs.Textbox(lines=5, label="Input Text"),
gr.inputs.Radio(label="Pick a TTS Model",choices=MODEL_NAMES,)
]
outputs = gr.outputs.Audio(type="file", label="Output Audio")
title = "Tensorflow TTS"
description = "Gradio demo for TensorFlowTTS: Real-Time State-of-the-art Speech Synthesis for Tensorflow 2. To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://tensorspeech.github.io/TensorFlowTTS/'>TensorFlowTTS: Real-Time State-of-the-art Speech Synthesis for Tensorflow 2</a> | <a href='https://github.com/TensorSpeech/TensorFlowTTS'>Github Repo</a></p>"
examples = [
["TensorFlowTTS provides real-time state-of-the-art speech synthesis architectures such as Tacotron-2, Melgan, Multiband-Melgan, FastSpeech, FastSpeech2 based-on TensorFlow 2."],
["With Tensorflow 2, we can speed-up training/inference progress, optimizer further by using fake-quantize aware and pruning, make TTS models can be run faster than real-time and be able to deploy on mobile devices or embedded systems."]
]
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples).launch() |