Spaces:
Runtime error
Runtime error
File size: 4,058 Bytes
d5aaf43 5f8b9a9 8ed8368 d5aaf43 159ccaa d5aaf43 159ccaa d5aaf43 159ccaa d5aaf43 a9547b0 474e3da 159ccaa a9547b0 159ccaa a9547b0 159ccaa a9547b0 d5aaf43 159ccaa d5aaf43 159ccaa d5aaf43 8ed8368 d5aaf43 8ed8368 d5aaf43 8ed8368 d5aaf43 159ccaa d5aaf43 159ccaa d5aaf43 159ccaa d5aaf43 159ccaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import gradio as gr
import os
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">AI Lawyer</h1>
<p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/StevenChen16/llama3-8b-Lawyer"><b>StevenChen16/llama3-8b-Lawyer</b></a>. This model is fine-tuned to provide legal information and assist with a wide range of legal questions. Feel free to ask anything!</p>
</div>
'''
LICENSE = """
<p/>
---
Built with model "StevenChen16/Llama3-8B-Lawyer", based on "meta-llama/Meta-Llama-3-8B"
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">AI Lawyer</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything about US and Canada law...</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("StevenChen16/llama3-8b-Lawyer")
model = AutoModelForCausalLM.from_pretrained("StevenChen16/llama3-8b-Lawyer", device_map="auto")
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("")
]
def chat_llama3_8b(message: str, history: list, temperature: float, max_new_tokens: int) -> str:
conversation = []
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=terminators,
)
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
# Gradio block
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.95,
label="Temperature",
render=False),
gr.Slider(minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False ),
],
examples=[
['What are the key differences between a sole proprietorship and a partnership?'],
['What legal steps should I take if I want to start a business in the US?'],
['Can you explain the concept of "duty of care" in negligence law?'],
['What are the legal requirements for obtaining a patent in Canada?'],
['How can I protect my intellectual property when sharing my idea with potential investors?']
],
cache_examples=False,
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch(share=True)
|