Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
import spaces
|
4 |
-
from transformers import GemmaTokenizer, AutoModelForCausalLM
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
from threading import Thread
|
7 |
|
8 |
# Set an environment variable
|
9 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
10 |
|
11 |
-
|
12 |
DESCRIPTION = '''
|
13 |
<div>
|
14 |
-
<h1 style="text-align: center;">
|
15 |
-
<p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/StevenChen16/llama3-8b-Lawyer"><b>
|
16 |
-
<p>🔎 For more details about the Llama3 release and how to use the model with <code>transformers</code>, take a look <a href="https://huggingface.co/blog/llama3">at our blog post</a>.</p>
|
17 |
-
<p>🦕 Looking for an even more powerful model? Check out the <a href="https://huggingface.co/chat/"><b>Hugging Chat</b></a> integration for Meta Llama 3 70b</p>
|
18 |
</div>
|
19 |
'''
|
20 |
|
21 |
LICENSE = """
|
22 |
<p/>
|
23 |
---
|
24 |
-
Built with Meta
|
25 |
"""
|
26 |
|
27 |
PLACEHOLDER = """
|
28 |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
29 |
-
<
|
30 |
-
<
|
31 |
-
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
|
32 |
</div>
|
33 |
"""
|
34 |
|
35 |
-
|
36 |
css = """
|
37 |
h1 {
|
38 |
text-align: center;
|
@@ -48,28 +41,13 @@ h1 {
|
|
48 |
|
49 |
# Load the tokenizer and model
|
50 |
tokenizer = AutoTokenizer.from_pretrained("StevenChen16/llama3-8b-Lawyer")
|
51 |
-
model = AutoModelForCausalLM.from_pretrained("StevenChen16/llama3-8b-Lawyer", device_map="auto")
|
52 |
terminators = [
|
53 |
tokenizer.eos_token_id,
|
54 |
-
tokenizer.convert_tokens_to_ids("
|
55 |
]
|
56 |
|
57 |
-
|
58 |
-
def chat_llama3_8b(message: str,
|
59 |
-
history: list,
|
60 |
-
temperature: float,
|
61 |
-
max_new_tokens: int
|
62 |
-
) -> str:
|
63 |
-
"""
|
64 |
-
Generate a streaming response using the llama3-8b model.
|
65 |
-
Args:
|
66 |
-
message (str): The input message.
|
67 |
-
history (list): The conversation history used by ChatInterface.
|
68 |
-
temperature (float): The temperature for generating the response.
|
69 |
-
max_new_tokens (int): The maximum number of new tokens to generate.
|
70 |
-
Returns:
|
71 |
-
str: The generated response.
|
72 |
-
"""
|
73 |
conversation = []
|
74 |
for user, assistant in history:
|
75 |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
@@ -87,7 +65,6 @@ def chat_llama3_8b(message: str,
|
|
87 |
temperature=temperature,
|
88 |
eos_token_id=terminators,
|
89 |
)
|
90 |
-
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
|
91 |
if temperature == 0:
|
92 |
generate_kwargs['do_sample'] = False
|
93 |
|
@@ -97,15 +74,12 @@ def chat_llama3_8b(message: str,
|
|
97 |
outputs = []
|
98 |
for text in streamer:
|
99 |
outputs.append(text)
|
100 |
-
#print(outputs)
|
101 |
yield "".join(outputs)
|
102 |
-
|
103 |
|
104 |
# Gradio block
|
105 |
-
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
|
106 |
|
107 |
-
with gr.Blocks(
|
108 |
-
|
109 |
gr.Markdown(DESCRIPTION)
|
110 |
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
|
111 |
gr.ChatInterface(
|
@@ -128,16 +102,15 @@ with gr.Blocks(fill_height=True, css=css) as demo:
|
|
128 |
render=False ),
|
129 |
],
|
130 |
examples=[
|
131 |
-
['
|
132 |
-
['
|
133 |
-
['
|
134 |
-
['
|
135 |
-
['
|
136 |
-
|
137 |
cache_examples=False,
|
138 |
-
|
139 |
-
|
140 |
gr.Markdown(LICENSE)
|
141 |
-
|
142 |
if __name__ == "__main__":
|
143 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
from threading import Thread
|
5 |
|
6 |
# Set an environment variable
|
7 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
8 |
|
|
|
9 |
DESCRIPTION = '''
|
10 |
<div>
|
11 |
+
<h1 style="text-align: center;">AI Lawyer</h1>
|
12 |
+
<p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/StevenChen16/llama3-8b-Lawyer"><b>StevenChen16/llama3-8b-Lawyer</b></a>. This model is fine-tuned to provide legal information and assist with a wide range of legal questions. Feel free to ask anything!</p>
|
|
|
|
|
13 |
</div>
|
14 |
'''
|
15 |
|
16 |
LICENSE = """
|
17 |
<p/>
|
18 |
---
|
19 |
+
Built with model "StevenChen16/Llama3-8B-Lawyer", based on "meta-llama/Meta-Llama-3-8B"
|
20 |
"""
|
21 |
|
22 |
PLACEHOLDER = """
|
23 |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
24 |
+
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">AI Lawyer</h1>
|
25 |
+
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything about US and Canada law...</p>
|
|
|
26 |
</div>
|
27 |
"""
|
28 |
|
|
|
29 |
css = """
|
30 |
h1 {
|
31 |
text-align: center;
|
|
|
41 |
|
42 |
# Load the tokenizer and model
|
43 |
tokenizer = AutoTokenizer.from_pretrained("StevenChen16/llama3-8b-Lawyer")
|
44 |
+
model = AutoModelForCausalLM.from_pretrained("StevenChen16/llama3-8b-Lawyer", device_map="auto")
|
45 |
terminators = [
|
46 |
tokenizer.eos_token_id,
|
47 |
+
tokenizer.convert_tokens_to_ids("")
|
48 |
]
|
49 |
|
50 |
+
def chat_llama3_8b(message: str, history: list, temperature: float, max_new_tokens: int) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
conversation = []
|
52 |
for user, assistant in history:
|
53 |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
|
|
65 |
temperature=temperature,
|
66 |
eos_token_id=terminators,
|
67 |
)
|
|
|
68 |
if temperature == 0:
|
69 |
generate_kwargs['do_sample'] = False
|
70 |
|
|
|
74 |
outputs = []
|
75 |
for text in streamer:
|
76 |
outputs.append(text)
|
|
|
77 |
yield "".join(outputs)
|
|
|
78 |
|
79 |
# Gradio block
|
80 |
+
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
|
81 |
|
82 |
+
with gr.Blocks(css=css) as demo:
|
|
|
83 |
gr.Markdown(DESCRIPTION)
|
84 |
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
|
85 |
gr.ChatInterface(
|
|
|
102 |
render=False ),
|
103 |
],
|
104 |
examples=[
|
105 |
+
['What are the key differences between a sole proprietorship and a partnership?'],
|
106 |
+
['What legal steps should I take if I want to start a business in the US?'],
|
107 |
+
['Can you explain the concept of "duty of care" in negligence law?'],
|
108 |
+
['What are the legal requirements for obtaining a patent in Canada?'],
|
109 |
+
['How can I protect my intellectual property when sharing my idea with potential investors?']
|
110 |
+
],
|
111 |
cache_examples=False,
|
112 |
+
)
|
|
|
113 |
gr.Markdown(LICENSE)
|
114 |
+
|
115 |
if __name__ == "__main__":
|
116 |
+
demo.launch(share=True)
|