Steveeeeeeen's picture
Steveeeeeeen HF staff
Update app.py
7504243 verified
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
import soundfile as sf
from xcodec2.modeling_xcodec2 import XCodec2Model
import torchaudio
import gradio as gr
import tempfile
import os
api_key = os.getenv("HF_TOKEN")
from huggingface_hub import login
login(token=api_key)
llasa_3b ='HKUSTAudio/Llasa-1B-Multilingual'
tokenizer = AutoTokenizer.from_pretrained(llasa_3b)
model = AutoModelForCausalLM.from_pretrained(
llasa_3b,
trust_remote_code=True,
device_map='cuda',
)
model_path = "srinivasbilla/xcodec2"
Codec_model = XCodec2Model.from_pretrained(model_path)
Codec_model.eval().cuda()
whisper_turbo_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=torch.float16,
device='cuda',
)
SPEAKERS = {
"French Female": {
"path": "speakers/fr_female.wav",
"transcript": "",
},
"French Male": {
"path": "speakers/fr_male.wav",
"transcript": "",
},
"German Female": {
"path": "speakers/de_female.wav",
"transcript": "",
},
"German Male": {
"path": "speakers/de_male.wav",
"transcript": "",
},
"Spanish Female": {
"path": "speakers/es_female.wav",
"transcript": "",
},
"Spanish Male": {
"path": "speakers/es_male.wav",
"transcript": "",
},
"Italian Female": {
"path": "speakers/it_female.wav",
"transcript": "",
},
"Italian Male": {
"path": "speakers/it_male.wav",
"transcript": "",
},
}
banner_url = "https://huggingface.co/datasets/Steveeeeeeen/random_images/resolve/main/llasagna.png"
BANNER = f'<div style="display: flex; justify-content: space-around;"><img src="{banner_url}" alt="Banner" style="width: 40vw; min-width: 150px; max-width: 300px;"> </div>'
def preview_speaker(display_name):
"""Returns the audio and transcript for preview"""
speaker_name = speaker_display_dict[display_name]
if speaker_name in SPEAKERS:
waveform, sample_rate = torchaudio.load(SPEAKERS[speaker_name]["path"])
return (sample_rate, waveform[0].numpy()), SPEAKERS[speaker_name]["transcript"]
return None, ""
def ids_to_speech_tokens(speech_ids):
speech_tokens_str = []
for speech_id in speech_ids:
speech_tokens_str.append(f"<|s_{speech_id}|>")
return speech_tokens_str
def extract_speech_ids(speech_tokens_str):
speech_ids = []
for token_str in speech_tokens_str:
if token_str.startswith('<|s_') and token_str.endswith('|>'):
num_str = token_str[4:-2]
num = int(num_str)
speech_ids.append(num)
else:
print(f"Unexpected token: {token_str}")
return speech_ids
@spaces.GPU(duration=60)
def infer(sample_audio_path, target_text, progress=gr.Progress()):
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
progress(0, 'Loading and trimming audio...')
waveform, sample_rate = torchaudio.load(sample_audio_path)
if len(waveform[0])/sample_rate > 15:
gr.Warning("Trimming audio to first 15secs.")
waveform = waveform[:, :sample_rate*15]
# Check if the audio is stereo (i.e., has more than one channel)
if waveform.size(0) > 1:
# Convert stereo to mono by averaging the channels
waveform_mono = torch.mean(waveform, dim=0, keepdim=True)
else:
# If already mono, just use the original waveform
waveform_mono = waveform
prompt_wav = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform_mono)
prompt_text = whisper_turbo_pipe(prompt_wav[0].numpy())['text'].strip()
progress(0.5, 'Transcribed! Generating speech...')
if len(target_text) == 0:
return None
elif len(target_text) > 300:
gr.Warning("Text is too long. Please keep it under 300 characters.")
target_text = target_text[:300]
input_text = prompt_text + ' ' + target_text
#TTS start!
with torch.no_grad():
# Encode the prompt wav
vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav)
vq_code_prompt = vq_code_prompt[0,0,:]
# Convert int 12345 to token <|s_12345|>
speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
# Tokenize the text and the speech prefix
chat = [
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)}
]
input_ids = tokenizer.apply_chat_template(
chat,
tokenize=True,
return_tensors='pt',
continue_final_message=True
)
input_ids = input_ids.to('cuda')
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
# Generate the speech autoregressively
outputs = model.generate(
input_ids,
max_length=2048, # We trained our model with a max length of 2048
eos_token_id= speech_end_id ,
do_sample=True,
top_p=1,
temperature=0.8
)
# Extract the speech tokens
generated_ids = outputs[0][input_ids.shape[1]-len(speech_ids_prefix):-1]
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
# Convert token <|s_23456|> to int 23456
speech_tokens = extract_speech_ids(speech_tokens)
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
# Decode the speech tokens to speech waveform
gen_wav = Codec_model.decode_code(speech_tokens)
# if only need the generated part
gen_wav = gen_wav[:,:,prompt_wav.shape[1]:]
progress(1, 'Synthesized!')
return (16000, gen_wav[0, 0, :].cpu().numpy())
@spaces.GPU(duration=60)
def text_only_infer(target_text, progress=gr.Progress()):
"""Function to generate speech directly from text without a reference voice"""
if len(target_text) == 0:
return None
elif len(target_text) > 300:
gr.Warning("Text is too long. Please keep it under 300 characters.")
target_text = target_text[:300]
progress(0.2, 'Generating speech...')
with torch.no_grad():
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{target_text}<|TEXT_UNDERSTANDING_END|>"
# Tokenize the text
chat = [
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>"}
]
input_ids = tokenizer.apply_chat_template(
chat,
tokenize=True,
return_tensors='pt',
continue_final_message=True
)
input_ids = input_ids.to('cuda')
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
# Generate the speech autoregressively
outputs = model.generate(
input_ids,
max_length=2048,
eos_token_id=speech_end_id,
do_sample=True,
top_p=1,
temperature=0.8
)
progress(0.6, 'Processing audio...')
# Extract the speech tokens
generated_ids = outputs[0][input_ids.shape[1]:-1]
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
# Convert token <|s_23456|> to int 23456
speech_tokens = extract_speech_ids(speech_tokens)
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
# Decode the speech tokens to speech waveform
gen_wav = Codec_model.decode_code(speech_tokens)
progress(1, 'Done!')
return (16000, gen_wav[0, 0, :].cpu().numpy())
with gr.Blocks() as app_tts:
gr.Markdown("# Zero Shot Voice Clone TTS")
with gr.Row():
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
speaker_dropdown = gr.Dropdown(
choices=list(SPEAKERS.keys()),
label="Or select a predefined speaker",
value=None
)
gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
generate_btn = gr.Button("Synthesize", variant="primary")
audio_output = gr.Audio(label="Synthesized Audio")
def update_audio(speaker):
if speaker in SPEAKERS:
return SPEAKERS[speaker]["path"]
return None
speaker_dropdown.change(
fn=update_audio,
inputs=[speaker_dropdown],
outputs=[ref_audio_input]
)
generate_btn.click(
infer,
inputs=[
ref_audio_input,
gen_text_input,
],
outputs=[audio_output],
)
with gr.Blocks() as app_credits:
gr.Markdown("""
# Credits
* [zhenye234](https://github.com/zhenye234) for the original [repo](https://github.com/zhenye234/LLaSA_training)
* [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
""")
with gr.Blocks() as app_direct_tts:
gr.Markdown("# Direct Text-to-Speech")
gr.Markdown("Generate speech directly from text without voice cloning")
text_input = gr.Textbox(
label="Text to Generate",
lines=10,
placeholder="Enter the text you want to convert to speech..."
)
generate_btn = gr.Button("Generate Speech", variant="primary")
audio_output = gr.Audio(label="Generated Audio")
generate_btn.click(
text_only_infer,
inputs=[text_input],
outputs=[audio_output],
)
with gr.Blocks() as app:
gr.Markdown(
"""
# Llasa 1b Multilingual TTS
This is a local web UI for Llasa 1b multilingual TTS that supports:
- Zero Shot Voice Cloning
- Direct Text-to-Speech
Supports multiple languages including English, Chinese, French, German, Dutch, Spanish, Italian, Portuguese, Polish, Japanese and Korean!
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
"""
)
gr.TabbedInterface(
[app_direct_tts, app_tts],
["Direct TTS", "Voice Cloning"]
)
app.launch(ssr_mode=False)