Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,753 Bytes
182306d e279ff3 182306d 5bc0ae8 182306d 22b9e3b 182306d 7504243 15994b1 182306d 22b9e3b 182306d 22b9e3b 182306d 15994b1 182306d 889feed 182306d 15994b1 182306d 15994b1 182306d 15994b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
import soundfile as sf
from xcodec2.modeling_xcodec2 import XCodec2Model
import torchaudio
import gradio as gr
import tempfile
import os
api_key = os.getenv("HF_TOKEN")
from huggingface_hub import login
login(token=api_key)
llasa_3b ='HKUSTAudio/Llasa-1B-Multilingual'
tokenizer = AutoTokenizer.from_pretrained(llasa_3b)
model = AutoModelForCausalLM.from_pretrained(
llasa_3b,
trust_remote_code=True,
device_map='cuda',
)
model_path = "srinivasbilla/xcodec2"
Codec_model = XCodec2Model.from_pretrained(model_path)
Codec_model.eval().cuda()
whisper_turbo_pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=torch.float16,
device='cuda',
)
SPEAKERS = {
"French Female": {
"path": "speakers/fr_female.wav",
"transcript": "",
},
"French Male": {
"path": "speakers/fr_male.wav",
"transcript": "",
},
"German Female": {
"path": "speakers/de_female.wav",
"transcript": "",
},
"German Male": {
"path": "speakers/de_male.wav",
"transcript": "",
},
"Spanish Female": {
"path": "speakers/es_female.wav",
"transcript": "",
},
"Spanish Male": {
"path": "speakers/es_male.wav",
"transcript": "",
},
"Italian Female": {
"path": "speakers/it_female.wav",
"transcript": "",
},
"Italian Male": {
"path": "speakers/it_male.wav",
"transcript": "",
},
}
banner_url = "https://huggingface.co/datasets/Steveeeeeeen/random_images/resolve/main/llasagna.png"
BANNER = f'<div style="display: flex; justify-content: space-around;"><img src="{banner_url}" alt="Banner" style="width: 40vw; min-width: 150px; max-width: 300px;"> </div>'
def preview_speaker(display_name):
"""Returns the audio and transcript for preview"""
speaker_name = speaker_display_dict[display_name]
if speaker_name in SPEAKERS:
waveform, sample_rate = torchaudio.load(SPEAKERS[speaker_name]["path"])
return (sample_rate, waveform[0].numpy()), SPEAKERS[speaker_name]["transcript"]
return None, ""
def ids_to_speech_tokens(speech_ids):
speech_tokens_str = []
for speech_id in speech_ids:
speech_tokens_str.append(f"<|s_{speech_id}|>")
return speech_tokens_str
def extract_speech_ids(speech_tokens_str):
speech_ids = []
for token_str in speech_tokens_str:
if token_str.startswith('<|s_') and token_str.endswith('|>'):
num_str = token_str[4:-2]
num = int(num_str)
speech_ids.append(num)
else:
print(f"Unexpected token: {token_str}")
return speech_ids
@spaces.GPU(duration=60)
def infer(sample_audio_path, target_text, progress=gr.Progress()):
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
progress(0, 'Loading and trimming audio...')
waveform, sample_rate = torchaudio.load(sample_audio_path)
if len(waveform[0])/sample_rate > 15:
gr.Warning("Trimming audio to first 15secs.")
waveform = waveform[:, :sample_rate*15]
# Check if the audio is stereo (i.e., has more than one channel)
if waveform.size(0) > 1:
# Convert stereo to mono by averaging the channels
waveform_mono = torch.mean(waveform, dim=0, keepdim=True)
else:
# If already mono, just use the original waveform
waveform_mono = waveform
prompt_wav = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform_mono)
prompt_text = whisper_turbo_pipe(prompt_wav[0].numpy())['text'].strip()
progress(0.5, 'Transcribed! Generating speech...')
if len(target_text) == 0:
return None
elif len(target_text) > 300:
gr.Warning("Text is too long. Please keep it under 300 characters.")
target_text = target_text[:300]
input_text = prompt_text + ' ' + target_text
#TTS start!
with torch.no_grad():
# Encode the prompt wav
vq_code_prompt = Codec_model.encode_code(input_waveform=prompt_wav)
vq_code_prompt = vq_code_prompt[0,0,:]
# Convert int 12345 to token <|s_12345|>
speech_ids_prefix = ids_to_speech_tokens(vq_code_prompt)
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{input_text}<|TEXT_UNDERSTANDING_END|>"
# Tokenize the text and the speech prefix
chat = [
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>" + ''.join(speech_ids_prefix)}
]
input_ids = tokenizer.apply_chat_template(
chat,
tokenize=True,
return_tensors='pt',
continue_final_message=True
)
input_ids = input_ids.to('cuda')
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
# Generate the speech autoregressively
outputs = model.generate(
input_ids,
max_length=2048, # We trained our model with a max length of 2048
eos_token_id= speech_end_id ,
do_sample=True,
top_p=1,
temperature=0.8
)
# Extract the speech tokens
generated_ids = outputs[0][input_ids.shape[1]-len(speech_ids_prefix):-1]
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
# Convert token <|s_23456|> to int 23456
speech_tokens = extract_speech_ids(speech_tokens)
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
# Decode the speech tokens to speech waveform
gen_wav = Codec_model.decode_code(speech_tokens)
# if only need the generated part
gen_wav = gen_wav[:,:,prompt_wav.shape[1]:]
progress(1, 'Synthesized!')
return (16000, gen_wav[0, 0, :].cpu().numpy())
@spaces.GPU(duration=60)
def text_only_infer(target_text, progress=gr.Progress()):
"""Function to generate speech directly from text without a reference voice"""
if len(target_text) == 0:
return None
elif len(target_text) > 300:
gr.Warning("Text is too long. Please keep it under 300 characters.")
target_text = target_text[:300]
progress(0.2, 'Generating speech...')
with torch.no_grad():
formatted_text = f"<|TEXT_UNDERSTANDING_START|>{target_text}<|TEXT_UNDERSTANDING_END|>"
# Tokenize the text
chat = [
{"role": "user", "content": "Convert the text to speech:" + formatted_text},
{"role": "assistant", "content": "<|SPEECH_GENERATION_START|>"}
]
input_ids = tokenizer.apply_chat_template(
chat,
tokenize=True,
return_tensors='pt',
continue_final_message=True
)
input_ids = input_ids.to('cuda')
speech_end_id = tokenizer.convert_tokens_to_ids('<|SPEECH_GENERATION_END|>')
# Generate the speech autoregressively
outputs = model.generate(
input_ids,
max_length=2048,
eos_token_id=speech_end_id,
do_sample=True,
top_p=1,
temperature=0.8
)
progress(0.6, 'Processing audio...')
# Extract the speech tokens
generated_ids = outputs[0][input_ids.shape[1]:-1]
speech_tokens = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
# Convert token <|s_23456|> to int 23456
speech_tokens = extract_speech_ids(speech_tokens)
speech_tokens = torch.tensor(speech_tokens).cuda().unsqueeze(0).unsqueeze(0)
# Decode the speech tokens to speech waveform
gen_wav = Codec_model.decode_code(speech_tokens)
progress(1, 'Done!')
return (16000, gen_wav[0, 0, :].cpu().numpy())
with gr.Blocks() as app_tts:
gr.Markdown("# Zero Shot Voice Clone TTS")
with gr.Row():
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
speaker_dropdown = gr.Dropdown(
choices=list(SPEAKERS.keys()),
label="Or select a predefined speaker",
value=None
)
gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
generate_btn = gr.Button("Synthesize", variant="primary")
audio_output = gr.Audio(label="Synthesized Audio")
def update_audio(speaker):
if speaker in SPEAKERS:
return SPEAKERS[speaker]["path"]
return None
speaker_dropdown.change(
fn=update_audio,
inputs=[speaker_dropdown],
outputs=[ref_audio_input]
)
generate_btn.click(
infer,
inputs=[
ref_audio_input,
gen_text_input,
],
outputs=[audio_output],
)
with gr.Blocks() as app_credits:
gr.Markdown("""
# Credits
* [zhenye234](https://github.com/zhenye234) for the original [repo](https://github.com/zhenye234/LLaSA_training)
* [mrfakename](https://huggingface.co/mrfakename) for the [gradio demo code](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
""")
with gr.Blocks() as app_direct_tts:
gr.Markdown("# Direct Text-to-Speech")
gr.Markdown("Generate speech directly from text without voice cloning")
text_input = gr.Textbox(
label="Text to Generate",
lines=10,
placeholder="Enter the text you want to convert to speech..."
)
generate_btn = gr.Button("Generate Speech", variant="primary")
audio_output = gr.Audio(label="Generated Audio")
generate_btn.click(
text_only_infer,
inputs=[text_input],
outputs=[audio_output],
)
with gr.Blocks() as app:
gr.Markdown(
"""
# Llasa 1b Multilingual TTS
This is a local web UI for Llasa 1b multilingual TTS that supports:
- Zero Shot Voice Cloning
- Direct Text-to-Speech
Supports multiple languages including English, Chinese, French, German, Dutch, Spanish, Italian, Portuguese, Polish, Japanese and Korean!
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
"""
)
gr.TabbedInterface(
[app_direct_tts, app_tts],
["Direct TTS", "Voice Cloning"]
)
app.launch(ssr_mode=False) |