File size: 4,782 Bytes
24a6868
 
 
 
 
 
 
ccacd4d
ceadb77
dc704d6
24a6868
 
 
 
 
 
 
 
 
 
7a3dfb1
11453ec
24a6868
 
 
6095378
 
 
 
 
 
 
 
7de4c3e
c7f68b4
 
 
 
0563fad
24a6868
 
 
 
 
 
 
 
b0abbc2
 
 
0563fad
 
b0abbc2
24a6868
b0abbc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f97103a
b0abbc2
24a6868
d62c968
5a7e564
24a6868
 
 
c6a4957
e9947e2
7d5447f
ebc69eb
0563fad
24a6868
0563fad
24a6868
 
3eeb179
c7f68b4
ffaf784
 
24a6868
3389734
 
 
00acfc9
7de4c3e
6095378
00acfc9
44dca96
00acfc9
6095378
 
 
11453ec
6095378
 
2d5ec6f
6095378
e9947e2
6095378
 
3389734
24a6868
6095378
e7066e9
24a6868
b0abbc2
3389734
24a6868
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Imports
import gradio as gr
import random
import spaces
import torch
import uuid
import os

from diffusers import StableDiffusionXLPipeline, ControlNetModel
from diffusers.models import AutoencoderKL

# Pre-Initialize
DEVICE = "auto"
if DEVICE == "auto":
    DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[SYSTEM] | Using {DEVICE} type compute device.")

# Variables
MAX_SEED = 9007199254740991
DEFAULT_INPUT = ""
DEFAULT_NEGATIVE_INPUT = "EasyNegative, deformed, distorted, disfigured, disconnected, disgusting, mutation, mutated, blur, blurry, scribble, abstract, watermark, ugly, amputation, limb, limbs, leg, legs, foot, feet, toe, toes, arm, arms, hand, hands, finger, fingers, head, heads, exposed, porn, nude, nudity, naked, nsfw"
DEFAULT_MODEL = "Default"
DEFAULT_HEIGHT = 1024
DEFAULT_WIDTH = 1024

css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

# Functions
def save_image(img, seed):
    name = f"{seed}-{uuid.uuid4()}.png"
    img.save(name)
    return name
    
def get_seed(seed):
    seed = seed.strip()
    if seed.isdigit():
        return int(seed)
    else:
        return random.randint(0, MAX_SEED)

@spaces.GPU(duration=30)
def generate(input=DEFAULT_INPUT, negative_input=DEFAULT_NEGATIVE_INPUT, model=DEFAULT_MODEL, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None):

    repo = None
    seed = get_seed(seed)

    print(input, negative_input, model, height, width, steps, guidance, number, seed)

    if model == "Anime":   
        vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
        controlnet = ControlNetModel.from_pretrained("MakiPan/controlnet-encoded-hands-130k", torch_dtype=torch.float16)
        repo = StableDiffusionXLPipeline.from_pretrained(cagliostrolab/animagine-xl-3.1, vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
        steps = steps or 16
        guidance = guidance or 7
    else:
        vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
        controlnet = ControlNetModel.from_pretrained("MakiPan/controlnet-encoded-hands-130k", torch_dtype=torch.float16)
        repo = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae, controlnet=controlnet, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False)
        repo.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="base")
        repo.set_adapters(["base"], adapter_weights=[0.7])
        steps = steps or 16
        guidance = guidance or 3
        
    repo.to(DEVICE)
    
    parameters  = {
        "prompt": input,
        "negative_prompt": negative_input,
        "height": height,
        "width": width,
        "num_inference_steps": steps,
        "guidance_scale": guidance,
        "num_images_per_prompt": number,
        "controlnet_conditioning_scale": 1,
        "cross_attention_kwargs": {"scale": 1},
        "generator": torch.Generator().manual_seed(seed),
        "use_resolution_binning": True,
        "output_type":"pil",
    }
    
    images = model(**parameters).images
    image_paths = [save_image(img, seed) for img in images]
    print(image_paths)
    return image_paths

def cloud():
    print("[CLOUD] | Space maintained.")


# Initialize
with gr.Blocks(css=css) as main:
    with gr.Column():
        gr.Markdown("🪄 Generate high quality images on all styles between 10 to 20 seconds.")
        
    with gr.Column():
        input = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Input")
        negative_input = gr.Textbox(lines=1, value=DEFAULT_NEGATIVE_INPUT, label="Input Negative")
        model = gr.Dropdown(label="Models", choices=["Default", "Anime"], value="Default")
        height = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_HEIGHT, label="Height")
        width = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_WIDTH, label="Width")
        steps = gr.Slider(minimum=0, maximum=100, step=1, value=16, label="Steps")
        guidance = gr.Slider(minimum=0, maximum=100, step=0.001, value=3, label = "Guidance")
        number = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number")
        seed = gr.Textbox(lines=1, value="", label="Seed (Blank for random)")
        submit = gr.Button("▶")
        maintain = gr.Button("☁️")

    with gr.Column():
        images = gr.Gallery(columns=1, label="Image")
            
    submit.click(generate, inputs=[input, negative_input, model, height, width, steps, guidance, number, seed], outputs=[images], queue=False)
    maintain.click(cloud, inputs=[], outputs=[], queue=False)

main.launch(show_api=True)